Question
Question: Find the value of following integral \(\int\limits_{0}^{\pi }{{{\left| \cos x \right|}^{3}}dx}\). ...
Find the value of following integral 0∫π∣cosx∣3dx.
a) 32b) 0c) 3−4d) 34
Solution
Now first we use the property ∣x∣=x if x > 0, and ∣x∣=−x if x < 0 and split the integral in two parts 0∫π∣cosx∣3dx=0∫2π∣cosx∣3dx+2π∫π∣cosx∣3dx. Now we can easily solve each integration as we know ∫cosx=sinx+C.
Complete step-by-step solution:
First divide the integral in two parts as 0∫π∣cosx∣3dx=0∫2π∣cosx∣3dx+2π∫π∣cosx∣3dx. We know that the function ∣x∣=x if x > 0, and ∣x∣=−x if x < 0.
Here for 0≤x≤2π,cosx≥0 and for 2π≤x≤π,cosx≤0
Hence we get 0∫π∣cosx∣3dx=0∫2π(cosx)3dx−2π∫π(cosx)3dx................(1)
Now we know cos3x=4cos3x−3cosx . Rearranging the terms we get.
cos3x=(4cos3x+3cosx) .
Substituting this in equation (1) we get
0∫π∣cosx∣3dx=0∫2π(4cos3x+3cosx)dx−2π∫π(4cos3x+3cosx)dx
Now we know that ∫cx=c∫x hence taking the constant out of integration we get
0∫π∣cosx∣3dx=410∫2π(cos3x+3cosx)dx−412π∫π(cos3x+3cosx)dx
Now also we know that ∫(f+g)=∫f+∫g . Hence using this property we get
0∫π∣cosx∣3dx=410∫2π(cos3x+3cosx)dx−412π∫π(cos3x+3cosx)dx
0∫π∣cosx∣3dx=410∫2πcos3xdx+410∫2π3cosxdx−412π∫πcos3xdx−412π∫π3cosxdx
Now taking 41 common from the equation we get
0∫π∣cosx∣3dx=410∫2πcos3xdx+0∫2π3cosxdx−2π∫πcos3xdx−2π∫π3cosxdx...........(2)
Now let us first evaluate the integral 0∫2πcos3xdx. Now we will use method of substitution to solve this method. Hence let us substitute 3x=t . Now differentiation on both sides we get 3dx=dt .
Hence we have 3x=t⇒dx=3dt Also note that as x→0,3x=t→0 and as x→2π,3x=t→23π