Solveeit Logo

Question

Question: Find the value of following integral: \(\int_0^\pi {\sqrt {1 + \sin 2x} dx} \)....

Find the value of following integral:
0π1+sin2xdx\int_0^\pi {\sqrt {1 + \sin 2x} dx} .

Explanation

Solution

Hint – In order to solve this problem you need to use the formulas of (cosx+sinx)2{(\cos x + \sin x)^2} and sin 2x. Then solve further to get the right answer to this problem.

Complete step-by-step answer:
The given equation is 0π1+sin2xdx\int_0^\pi {\sqrt {1 + \sin 2x} dx} .
We can write 1+sin2x=cos2x+sin2+2sinxcosx(cos2x+sin2=1,sin2x=2sinxcosx)1 + \sin 2x = {\cos ^2}x + {\sin ^2} + 2\sin x\cos x\,\,\,\,\,(\because {\cos ^2}x + {\sin ^2} = 1,\, \sin2x = 2\sin x\cos x\,\,)
and cos2x+sin2+2sinxcosx{\cos ^2}x + {\sin ^2} + 2\sin x\cos x is nothing but (cosx+sinx)2{(\cos x + \sin x)^2} as (a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab.
So, 0π1+sin2xdx\int_0^\pi {\sqrt {1 + \sin 2x} dx} can be written as 0π(cosx+sinx)2dx=0π(cosx+sinx)dx\int_0^\pi {\sqrt {{{(\cos x + \sin x)}^2}} dx} = \int_0^\pi {(\cos x + \sin x)dx} .
So, on integrating now we get,
0π(cosx+sinx)dx=0πcosxdx+0πsinxdx sinx0πcosx0π sinπsin0(cosπcos0) 00(11) 1+1=2  \Rightarrow \int_0^\pi {(\cos x + \sin x)dx = \int_0^\pi {\cos xdx + } \int_0^\pi {\sin x} dx} \\\ \Rightarrow \sin x\left| {_0^\pi - \cos x\left| {_0^\pi } \right.} \right. \\\ \Rightarrow \sin \pi - \sin 0 - (\cos \pi - \cos 0) \\\ \Rightarrow 0 - 0 - ( - 1 - 1) \\\ \Rightarrow 1 + 1 = 2 \\\
Hence, the answer to this question is 2.

Note – In this question we need to know the formula of (cosx+sinx)2{(\cos x + \sin x)^2} and should also know that integration of sin is –cos and cos is sin. Then put the integration limit and get the answer to the question by solving algebraically.