Solveeit Logo

Question

Question: Find the value of \(f\left( 2 \right)\) so that the function \(f\left( x \right)=\dfrac{{{x}^{4}}-16...

Find the value of f(2)f\left( 2 \right) so that the function f(x)=x416x2,x2f\left( x \right)=\dfrac{{{x}^{4}}-16}{x-2},x\ne 2 will be continuous at x=2x=2.

Explanation

Solution

To find the value of f(2)f\left( 2 \right) so that the function f(x)=x416x2,x2f\left( x \right)=\dfrac{{{x}^{4}}-16}{x-2},x\ne 2 will be continuous at x=2x=2 , we will take the limit of f(x)f\left( x \right) when x approaches 2. That is, limx2f(x)=x416x2\displaystyle \lim_{x \to 2}f(x)=\dfrac{{{x}^{4}}-16}{x-2} . Using the identity (a2b2)=(a+b)(ab)\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right) , we will get limx2f(x)=(x2+4)(x24)x2\displaystyle \lim_{x \to 2}f(x)=\dfrac{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}-4 \right)}{x-2} . On further using the same identity, we will get limx2f(x)=(x2+4)(x+2)(x2)x2\Rightarrow \displaystyle \lim_{x \to 2}f(x)=\dfrac{\left( {{x}^{2}}+4 \right)\left( x+2 \right)\left( x-2 \right)}{x-2} . On simplification and application of limit, the value of f(2)f\left( 2 \right) can be obtained.

Complete step by step answer:
We have to find the value of f(2)f\left( 2 \right) so that the function f(x)=x416x2,x2f\left( x \right)=\dfrac{{{x}^{4}}-16}{x-2},x\ne 2 will be continuous at x=2x=2 .
We know that a function f(x)f\left( x \right) is said to be continuous at the point c on the real line, if the limit of f(x)f\left( x \right) as x approaches that point c, is equal to the value f(c).
limxcf(x)=f(c)\Rightarrow \displaystyle \lim_{x \to c}f(x)=f(c)
We have f(x)=x416x2f\left( x \right)=\dfrac{{{x}^{4}}-16}{x-2} . It is given that this function is continuous at x=2x=2 . Hence, according to the theorem stated above, we can write
limx2f(x)=x416x2\displaystyle \lim_{x \to 2}f(x)=\dfrac{{{x}^{4}}-16}{x-2}
We cannot apply the direct limit on the above function as its denominator will become 0. Hence, we have simplified this. We know that (a2b2)=(a+b)(ab)\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right) . Thus, we can write
limx2f(x)=(x2)242x2\displaystyle \lim_{x \to 2}f(x)=\dfrac{{{\left( {{x}^{2}} \right)}^{2}}-{{4}^{2}}}{x-2}
On applying the identity, we will get
limx2f(x)=(x2+4)(x24)x2\displaystyle \lim_{x \to 2}f(x)=\dfrac{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}-4 \right)}{x-2}
We can write the above equation as
limx2f(x)=(x2+4)(x222)x2\displaystyle \lim_{x \to 2}f(x)=\dfrac{\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}-{{2}^{2}} \right)}{x-2}
Now, let us again apply the identity (a2b2)=(a+b)(ab)\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right) .
limx2f(x)=(x2+4)(x+2)(x2)x2\Rightarrow \displaystyle \lim_{x \to 2}f(x)=\dfrac{\left( {{x}^{2}}+4 \right)\left( x+2 \right)\left( x-2 \right)}{x-2}
Let’s cancel x2x-2 from the numerator and denominator. We will get
limx2f(x)=(x2+4)(x+2)\displaystyle \lim_{x \to 2}f(x)=\left( {{x}^{2}}+4 \right)\left( x+2 \right)
Now, we can apply the limit.
f(2)=(22+4)(2+2)\Rightarrow f(2)=\left( {{2}^{2}}+4 \right)\left( 2+2 \right)
On simplifying this, we will get

& \Rightarrow f(2)=\left( 4+4 \right)\times 4 \\\ & \Rightarrow f(2)=8\times 4=32 \\\ \end{aligned}$$ **Hence, the value of $f\left( 2 \right)$ is 32.** **Note:** Do not apply the limit at the beginning as the solution will be undefined. You may make mistake when writing the formula $\left( {{a}^{2}}-{{b}^{2}} \right)$ as ${{a}^{2}}-2ab+{{b}^{2}}$ . You may also use the identity as $\left( {{a}^{2}}+{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$ that will lead to wrong results.