Solveeit Logo

Question

Question: Find the value of Expression \(x + \dfrac{1}{x}\) if \(x = 2\sqrt 6 + 5\)...

Find the value of Expression x+1xx + \dfrac{1}{x} if x=26+5x = 2\sqrt 6 + 5

Explanation

Solution

Hint: Put the value of xx directly in the given expression and find out its value.cylindrical portion of the pillar is conical
Given, x=26+5x = 2\sqrt 6 + 5 and we have to find the value of x+1xx + \dfrac{1}{x}.
Let x+1x=y,x + \dfrac{1}{x} = y,then we have:
y=x2+1x\Rightarrow y = \dfrac{{{x^2} + 1}}{x}
Now, putting the value ofxx, we’ll get:
y=(26+5)2+1(26+5)\Rightarrow y = \dfrac{{{{(2\sqrt 6 + 5)}^2} + 1}}{{(2\sqrt 6 + 5)}}
We know that(a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab, using this formula we’ll get:
y=[(26)2+52+2×26×5]+1(26+5), y=24+25+206+1(26+5), y=50+206(26+5), y=10(26+5)(26+5), y=10  \Rightarrow y = \dfrac{{\left[ {{{(2\sqrt 6 )}^2} + {5^2} + 2 \times 2\sqrt 6 \times 5} \right] + 1}}{{(2\sqrt 6 + 5)}}, \\\ \Rightarrow y = \dfrac{{24 + 25 + 20\sqrt 6 + 1}}{{(2\sqrt 6 + 5)}}, \\\ \Rightarrow y = \dfrac{{50 + 20\sqrt 6 }}{{(2\sqrt 6 + 5)}}, \\\ \Rightarrow y = \dfrac{{10\left( {2\sqrt 6 + 5} \right)}}{{(2\sqrt 6 + 5)}}, \\\ \Rightarrow y = 10 \\\
Thus, the required value of x+1xx + \dfrac{1}{x} is 1010.
Note: If we are getting an irrational number in a denominator in any expression, then we can convert it into a rational number by rationalizing it. In this process we multiply both numerator and denominator by the conjugate of the denominator.