Solveeit Logo

Question

Question: Find the value of expression \(\underset{x\to \infty }{\mathop{\lim }}\,\left( {{\tan }^{-1}}\dfrac{...

Find the value of expression limx(tan1x+1x+4π4)\underset{x\to \infty }{\mathop{\lim }}\,\left( {{\tan }^{-1}}\dfrac{x+1}{x+4}-\dfrac{\pi }{4} \right) .

Explanation

Solution

Hint: Write π4\dfrac{\pi }{4} as tan11{{\tan }^{-1}}1 and apply the trigonometric identity of tan1Atan1B{{\tan }^{-1}}A-{{\tan }^{-1}}B , which is given as tan1Atan1B=tan1(AB1+AB){{\tan }^{-1}}A-{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A-B}{1+AB} \right)

Complete step-by-step answer:
Simplify the relation using above identity and now apply xx\to \infty to the updated expression and use result:
tan10=0{{\tan }^{-1}}0=0

Let the limit of the given expression in the problem is ‘L’. So, we can write the equation as
L=limx(tan1(x+1x+4)π4)................(i)L=\underset{x\to \infty }{\mathop{\lim }}\,\left( {{\tan }^{-1}}\left( \dfrac{x+1}{x+4} \right)-\dfrac{\pi }{4} \right)................\left( i \right)
Now, we can observe the expression (x+1x+4)\left( \dfrac{x+1}{x+4} \right) will give form of the limit as \dfrac{\infty }{\infty } if we put xx\to \infty to it. It means the given expression will be in indeterminate form for xx\to \infty . Hence, we need to simplify the expression further to get the limit of the given expression. So, as we know value of tan1(1){{\tan }^{-1}}\left( 1 \right) is π4\dfrac{\pi }{4} . So, we can replace π4\dfrac{\pi }{4} of the expression (i) by tan1(1){{\tan }^{-1}}\left( 1 \right) . So, we can write expression (i) as
L=limx(tan1(x+1x+4)tan1(1))................(ii)L=\underset{x\to \infty }{\mathop{\lim }}\,\left( {{\tan }^{-1}}\left( \dfrac{x+1}{x+4} \right)-{{\tan }^{-1}}\left( 1 \right) \right)................\left( ii \right)
Now, as we know the trigonometric identity of tan1Atan1B{{\tan }^{-1}}A-{{\tan }^{-1}}B can be given as
tan1Atan1B=tan1(AB1+AB)...........(iii){{\tan }^{-1}}A-{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A-B}{1+AB} \right)...........\left( iii \right)
Hence, we can apply the identity of equation (iii) to the equation (ii) and so, we can re-write the equation (ii) as
L=limxtan1(x+1x+411+1×(x+1x+4)) L=limxtan1[((x+1)(x+4)x+4)((x+4)+(x+1)(x+4))] L=limxtan1(x+1x4x+4+x+1) L=L=limx[tan1(32x+5)] \begin{aligned} & L=\underset{x\to \infty }{\mathop{\lim }}\,{{\tan }^{-1}}\left( \dfrac{\dfrac{x+1}{x+4}-1}{1+1\times \left( \dfrac{x+1}{x+4} \right)} \right) \\\ & \Rightarrow L=\underset{x\to \infty }{\mathop{\lim }}\,{{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{\left( x+1 \right)-\left( x+4 \right)}{x+4} \right)}{\left( \dfrac{\left( x+4 \right)+\left( x+1 \right)}{\left( x+4 \right)} \right)} \right] \\\ & L=\underset{x\to \infty }{\mathop{\lim }}\,{{\tan }^{-1}}\left( \dfrac{x+1-x-4}{x+4+x+1} \right) \\\ & L=L=\underset{x\to \infty }{\mathop{\lim }}\,\left[ {{\tan }^{-1}}\left( \dfrac{-3}{2x+5} \right) \right] \\\ \end{aligned}
Now, we can put xx\to \infty to the function 32x+5\dfrac{-3}{2x+5} and hence, it will tend to 0, when xx\to \infty will be applied. Hence, we can get value of L as
L=tan1(0)L={{\tan }^{-1}}\left( 0 \right)
Now, we know the value of tan1(0){{\tan }^{-1}}\left( 0 \right) is given as 0. So, the value of ‘L’ will also be 0.
Hence, we get an answer as 0. So,
limx[tan1(x+1x+4)π4]=0\underset{x\to \infty }{\mathop{\lim }}\,\left[ {{\tan }^{-1}}\left( \dfrac{x+1}{x+4} \right)-\dfrac{\pi }{4} \right]=0

Note: One may get confused with the term tan1(x+1x+4){{\tan }^{-1}}\left( \dfrac{x+1}{x+4} \right) , which is giving an intermediate form and another term (π4)\left( \dfrac{\pi }{4} \right) is a constant. So, one may think how a constant will change the form of an intermediate value. So, be clear with it that if any function is giving an intermediate form of limit then try to simplify the whole expression given to it, it will definitely change the characteristic of the limit value.
One may get confused with the identities tan1A+tan1B{{\tan }^{-1}}A+{{\tan }^{-1}}B and tan1Atan1B{{\tan }^{-1}}A-{{\tan }^{-1}}B .
Both are given as

& {{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right) \\\ & {{\tan }^{-1}}A-{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A-B}{1+AB} \right) \\\ \end{aligned}$$ Writing $$\dfrac{\pi }{4}$$ to ${{\tan }^{-1}}1$ is the key point of the given problem.