Solveeit Logo

Question

Question: Find the value of \(\displaystyle \lim_{x \to {{1}^{-}}}\text{ }\dfrac{\sqrt{\pi }-\sqrt{2{{\sin }^{...

Find the value of limx1 π2sin1x1x\displaystyle \lim_{x \to {{1}^{-}}}\text{ }\dfrac{\sqrt{\pi }-\sqrt{2{{\sin }^{-1}}x}}{\sqrt{1-x}}

& A.\dfrac{1}{\sqrt{2\pi }} \\\ & B.\sqrt{\dfrac{\pi }{2}} \\\ & C.\sqrt{\dfrac{2}{\pi }} \\\ & D.\sqrt{\pi } \\\ \end{aligned}$$
Explanation

Solution

To solve this question, first we will check by putting limit values that the given function is 00\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty } form or not then if this is the case then, we will apply L.Hospital Rule which allows us to differentiate numerator and denominator of given function separately. In between while differentiating we will use ddxsin1x=11x2\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}
ddx(f(x)g(x))=f(x)ddx(g(x))+g(x)ddx(f(x))\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)=f\left( x \right)\dfrac{d}{dx}\left( g\left( x \right) \right)+g\left( x \right)\dfrac{d}{dx}\left( f\left( x \right) \right)

Complete step by step answer:
We are given limx1 π2sin1x1x\displaystyle \lim_{x \to {{1}^{-}}}\text{ }\dfrac{\sqrt{\pi }-\sqrt{2{{\sin }^{-1}}x}}{\sqrt{1-x}} let it be I.
We will first try to obtain answer of the question that if after applying limit value are we getting 00 form\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }\text{ form} If so then we will apply L.Hospital rule.
L.Hospital rule is a method which is applicable when the obtained value is of type 00\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }
To apply this rule after we get 00\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty } form we just differentiate both numerator and denominator separately with respect to the given function:
Here, we have limx1 π2sin1x1x\displaystyle \lim_{x \to {{1}^{-}}}\text{ }\dfrac{\sqrt{\pi }-\sqrt{2{{\sin }^{-1}}x}}{\sqrt{1-x}}
Applying limit x1x \to 1 we get:
limx1 π2sin1x1x=π2sin1(1)11 . . . . . . . . . . (i)\displaystyle \lim_{x \to {{1}^{-}}}\text{ }\dfrac{\sqrt{\pi }-\sqrt{2{{\sin }^{-1}}x}}{\sqrt{1-x}}=\dfrac{\sqrt{\pi }-\sqrt{2{{\sin }^{-1}}\left( 1 \right)}}{\sqrt{1-1}}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}
Now, we have sinπ2=1\sin \dfrac{\pi }{2}=1
Applying sin1{{\sin }^{-1}} both sides we get:

& {{\sin }^{-1}}\left( \sin \dfrac{\pi }{2} \right)={{\sin }^{-1}}1 \\\ & \dfrac{\pi }{2}={{\sin }^{-1}}1 \\\ & {{\sin }^{-1}}1=\dfrac{\pi }{2} \\\ \end{aligned}$$ Using this in equation (i) we get: $$\begin{aligned} & \displaystyle \lim_{x \to {{1}^{-}}}\text{ }\dfrac{\sqrt{\pi }-\sqrt{2{{\sin }^{-1}}x}}{\sqrt{1-x}}=\dfrac{\sqrt{\pi }-\sqrt{2\cdot \dfrac{\pi }{2}}}{\sqrt{1-1}} \\\ & \Rightarrow \dfrac{\sqrt{\pi }-\sqrt{\pi }}{\sqrt{1-1}}=\dfrac{0}{0} \\\ \end{aligned}$$ Hence, we have obtained $\dfrac{0}{0}$ form, so we apply L.Hospital rule. Applying L.Hospital rule in $\displaystyle \lim_{x \to {{1}^{-}}}\text{ }\dfrac{\sqrt{\pi }-\sqrt{2{{\sin }^{-1}}x}}{\sqrt{1-x}}=I$ Hence, differentiating both numerator and denominator separately with respect to x we get: $$I=\displaystyle \lim_{x \to {{1}^{-}}}\text{ }\dfrac{\dfrac{d}{dx}\left( \sqrt{\pi }-\sqrt{2{{\sin }^{-1}}x} \right)}{\dfrac{d}{dx}\left( \sqrt{1-x} \right)}$$ Now, we have $$\dfrac{d}{dx}\left( f\left( x \right)-g\left( x \right) \right)=\dfrac{d}{dx}\left( f\left( x \right) \right)-\dfrac{d}{dx}\left( g\left( x \right) \right)$$ where f and g are functions of x and $\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ and $\dfrac{d}{dx}\sqrt{1-x}=\dfrac{1\left( -1 \right)}{2\sqrt{1-x}}$ Using this all in above we get: $$\begin{aligned} & I=\displaystyle \lim_{x \to {{1}^{-}}}\text{ }\dfrac{0-\dfrac{1}{2\sqrt{2{{\sin }^{-1}}x}}\dfrac{d}{dx}\left( 2{{\sin }^{-1}}x \right)}{\dfrac{1\left( 1 \right)}{2\sqrt{1-x}}} \\\ & I=\displaystyle \lim_{x \to {{1}^{-}}}\text{ }\dfrac{0-\dfrac{1}{2\sqrt{2{{\sin }^{-1}}x}}2\dfrac{1}{\sqrt{1-{{x}^{2}}}}}{\dfrac{-1}{2\sqrt{1-x}}} \\\ \end{aligned}$$ When solving $\dfrac{d}{dx}\left( 2{{\sin }^{-1}}x \right)$ we have used product rule of differentiation which is given as below. $$\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)=f\left( x \right)\dfrac{d}{dx}\left( g\left( x \right) \right)+g\left( x \right)\dfrac{d}{dx}\left( f\left( x \right) \right)$$ Where f and g are functions of x. Applying this in $\dfrac{d}{dx}\left( 2{{\sin }^{-1}}x \right)$ we get: $$\begin{aligned} & \dfrac{d}{dx}\left( 2{{\sin }^{-1}}x \right)=2\dfrac{d}{dx}{{\sin }^{-1}}x+{{\sin }^{-1}}x\dfrac{d}{dx}2 \\\ & \dfrac{d}{dx}\left( 2{{\sin }^{-1}}x \right)=2\dfrac{1}{\sqrt{1-{{x}^{2}}}}+0=\dfrac{2}{\sqrt{1-{{x}^{2}}}} \\\ \end{aligned}$$ So, we have obtained $$I=\displaystyle \lim_{x \to {{1}^{-}}}\text{ }\dfrac{\dfrac{1}{\sqrt{2{{\sin }^{-1}}x}\sqrt{1-{{x}^{2}}}}}{\dfrac{+1}{2\sqrt{1-x}}}$$ Taking $2\sqrt{1-x}$ on numerator we get: $$I=\displaystyle \lim_{x \to {{1}^{-}}}\text{ }\dfrac{2\sqrt{1-x}}{\sqrt{2{{\sin }^{-1}}x}\sqrt{1-{{x}^{2}}}}$$ Using formula ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$ in $\left( 1-{{x}^{2}} \right)$ we have $$\left( 1-{{x}^{2}} \right)=\left( 1+x \right)\left( 1-x \right)$$ Taking square root $$\sqrt{\left( 1-{{x}^{2}} \right)}=\sqrt{\left( 1-x \right)\left( 1+x \right)}$$ Using this value of I: $$I=\displaystyle \lim_{x \to {{1}^{-}}}\text{ }\dfrac{2\sqrt{1-x}}{\sqrt{2{{\sin }^{-1}}x}\sqrt{\left( 1-x \right)\left( 1+x \right)}}$$ Cancelling $\sqrt{1-x}$ we get: $$I=\displaystyle \lim_{x \to {{1}^{-}}}\text{ }\dfrac{2}{\sqrt{2{{\sin }^{-1}}x}\sqrt{\left( 1+x \right)}}$$ Cancelling $\sqrt{2}$ from $\sqrt{2}$ after writing $2=\sqrt{2}\sqrt{2}$ we get: $$I=\displaystyle \lim_{x \to {{1}^{-}}}\text{ }\dfrac{\sqrt{2}\sqrt{2}}{\sqrt{2}\sqrt{{{\sin }^{-1}}x}\sqrt{\left( 1+x \right)}}=\displaystyle \lim_{x \to {{1}^{-}}}\text{ }\dfrac{\sqrt{2}}{\sqrt{{{\sin }^{-1}}x\left( 1+x \right)}}$$ Now, finally applying $x \to 1$ we get: $$\begin{aligned} & \text{I=}\dfrac{\sqrt{2}}{\sqrt{{{\sin }^{-1}}1\left( 1+1 \right)}} \\\ & I=\dfrac{\sqrt{2}}{\sqrt{\left( \dfrac{\pi }{2} \right)\left( 2 \right)}}=\dfrac{\sqrt{2}}{\sqrt{\pi }} \\\ \end{aligned}$$ We had before as ${{\sin }^{-1}}(1)=\dfrac{\pi }{2}$ $$I=\sqrt{\dfrac{2}{\pi }}$$ **So, the correct answer is “Option C”.** **Note:** The form $\dfrac{0}{0}\And \dfrac{\infty }{\infty }$ forms are called indeterminate forms. While solving this type of questions, first check after putting a limit value that $\dfrac{0}{0}\Rightarrow \dfrac{\infty }{\infty }\text{ form}$ is achieved. If this is the case then only we can apply the L-Hospital rule. Also, a key point to note in this question is that we always try to obtain a numerator or denominator from x (a variable) before applying limit value. Like here we have got $\sqrt{2}$ in numerator and then we applied the limit.