Solveeit Logo

Question

Question: Find the value of \(\dfrac{x}{y}\), if \(\tan \theta =\dfrac{x\sin \phi }{1-x\cos \phi }\) and \(\ta...

Find the value of xy\dfrac{x}{y}, if tanθ=xsinϕ1xcosϕ\tan \theta =\dfrac{x\sin \phi }{1-x\cos \phi } and tanϕ=ysinθ1ycosθ\tan \phi =\dfrac{y\sin \theta }{1-y\cos \theta }.

Explanation

Solution

Hint: Find the value of x in terms of θ\theta and ϕ\phi using the equation tanθ=xsinϕ1xcosϕ\tan \theta =\dfrac{x\sin \phi }{1-x\cos \phi } and similarly find the value of y in terms of θ\theta and ϕ\phi using the equation tanϕ=ysinθ1ycosθ\tan \phi =\dfrac{y\sin \theta }{1-y\cos \theta }. Hence find the ratio xy\dfrac{x}{y}. Alternatively use componendo -dividendo, i.e. if ab=cd\dfrac{a}{b}=\dfrac{c}{d}, then k1a+k2bk3a+k4b=k1c+k2dk3c+k4d\dfrac{{{k}_{1}}a+{{k}_{2}}b}{{{k}_{3}}a+{{k}_{4}}b}=\dfrac{{{k}_{1}}c+{{k}_{2}}d}{{{k}_{3}}c+{{k}_{4}}d}. Hence express x and y in terms of θ\theta and ϕ\phi and hence find the value of xy\dfrac{x}{y}.

Complete step-by-step solution -
We have tanθ=xsinϕ1xcosϕ\tan \theta =\dfrac{x\sin \phi }{1-x\cos \phi }
Multiplying both sides by 1xcosϕ1-x\cos \phi , we get
tanθxtanθcosϕ=xsinϕ\tan \theta -x\tan \theta \cos \phi =x\sin \phi
Adding xtanθcosϕx\tan \theta \cos \phi on both sides of the equation, we get
tanθ=xtanθcosϕ+xsinϕ\tan \theta =x\tan \theta \cos \phi +x\sin \phi
Taking x common from the terms on RHS, we get
tanθ=x(tanθcosϕ+sinϕ)\tan \theta =x\left( \tan \theta \cos \phi +\sin \phi \right)
We know that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }
Hence, we have
sinθcosθ=xcosθ(sinθcosϕ+sinϕcosθ)\dfrac{\sin \theta }{\cos \theta }=\dfrac{x}{\cos \theta }\left( \sin \theta \cos \phi +\sin \phi \cos \theta \right)
We know that sinAcosB+cosAsinB=sin(A+B)\sin A\cos B+\cos A\sin B=\sin \left( A+B \right)
Hence, we have
sinθcosϕ+cosθsinϕ=sin(θ+ϕ)\sin \theta \cos \phi +\cos \theta \sin \phi =\sin \left( \theta +\phi \right)
Hence, we have
sinθcosθ=xcosθ(sin(θ+ϕ))\dfrac{\sin \theta }{\cos \theta }=\dfrac{x}{\cos \theta }\left( \sin \left( \theta +\phi \right) \right)
Multiplying both sides by cosθ\cos \theta , we get
sinθ=xsin(θ+ϕ)\sin \theta =x\sin \left( \theta +\phi \right)
Dividing both sides by sin(θ+ϕ)\sin \left( \theta +\phi \right), we get
x=sin(θ)sin(θ+ϕ) ... (i)x=\dfrac{\sin \left( \theta \right)}{\sin \left( \theta +\phi \right)}\text{ …………... }\left( i \right)
Also, we have tanϕ=ysinθ1ycosθ\tan \phi =\dfrac{y\sin \theta }{1-y\cos \theta }
Multiplying both sides by 1ycosθ1-y\cos \theta , we get
tanϕytanϕcosθ=ysinθ\tan \phi -y\tan \phi \cos \theta =y\sin \theta
Adding ytanϕcosθy\tan \phi \cos \theta on both sides of the equation, we get
tanθ=xtanθcosϕ+xsinϕ\tan \theta =x\tan \theta \cos \phi +x\sin \phi
Taking y common from the terms on RHS, we get
tanϕ=y(tanϕcosθ+sinθ)\tan \phi =y\left( \tan \phi \cos \theta +\sin \theta \right)
We know that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }
Hence, we have
sinϕcosϕ=xcosϕ(sinϕcosθ+sinθcosϕ)\dfrac{\sin \phi }{\cos \phi }=\dfrac{x}{\cos \phi }\left( \sin \phi \cos \theta +\sin \theta \cos \phi \right)
We know that sinAcosB+cosAsinB=sin(A+B)\sin A\cos B+\cos A\sin B=\sin \left( A+B \right)
Hence, we have
sinϕcosθ+cosϕsinθ=sin(θ+ϕ)\sin \phi \cos \theta +\cos \phi \sin \theta =\sin \left( \theta +\phi \right)
Hence, we have
sinϕcosϕ=ycosϕ(sin(θ+ϕ))\dfrac{\sin \phi }{\cos \phi }=\dfrac{y}{\cos \phi }\left( \sin \left( \theta +\phi \right) \right)
Multiplying both sides by cosϕ\cos \phi , we get
sinϕ=ysin(θ+ϕ)\sin \phi =y\sin \left( \theta +\phi \right)
Dividing both sides by sin(θ+ϕ)\sin \left( \theta +\phi \right), we get
y=sinϕsin(θ+ϕ)............................... (ii)y=\dfrac{\sin \phi }{\sin \left( \theta +\phi \right)}\text{............................... }\left( ii \right)
Dividing equation (i) by equation (ii), we get
xy=sinθsin(θ+ϕ)sinϕsin(θ+ϕ)=sinθsinϕ\dfrac{x}{y}=\dfrac{\dfrac{\sin \theta }{\sin \left( \theta +\phi \right)}}{\dfrac{\sin \phi }{\sin \left( \theta +\phi \right)}}=\dfrac{\sin \theta }{\sin \phi }
Hence, we have
xy=sinθsinϕ\dfrac{x}{y}=\dfrac{\sin \theta }{\sin \phi }, which is the required value of xy\dfrac{x}{y}.

Note: Alternative Solution: Best method:
We have
tanθ=xsinϕ1xcosϕsinθcosθ=xsinϕ1xcosϕ\tan \theta =\dfrac{x\sin \phi }{1-x\cos \phi }\Rightarrow \dfrac{\sin \theta }{\cos \theta }=\dfrac{x\sin \phi }{1-x\cos \phi }
We know that if ab=cd\dfrac{a}{b}=\dfrac{c}{d}, then k1a+k2bk3a+k4b=k1c+k2dk3c+k4d\dfrac{{{k}_{1}}a+{{k}_{2}}b}{{{k}_{3}}a+{{k}_{4}}b}=\dfrac{{{k}_{1}}c+{{k}_{2}}d}{{{k}_{3}}c+{{k}_{4}}d}.
Hence, we have
sinθcosθsinϕ+sinθcosϕ=xsinϕsinϕ(1xcosϕ)+cosϕ(xsinϕ)\dfrac{\sin \theta }{\cos \theta \sin \phi +\sin \theta \cos \phi }=\dfrac{x\sin \phi }{\sin \phi \left( 1-x\cos \phi \right)+\cos \phi \left( x\sin \phi \right)}
Hence, we have
xsinϕsinϕ=sinθsin(θ+ϕ)\dfrac{x\sin \phi }{\sin \phi }=\dfrac{\sin \theta }{\sin \left( \theta +\phi \right)}
Hence, we have
x=sinθsin(θ+ϕ)x=\dfrac{\sin \theta }{\sin \left( \theta +\phi \right)}
Similarly, we have
y=sinϕsin(θ+ϕ)y=\dfrac{\sin \phi }{\sin \left( \theta +\phi \right)} and hence
xy=sinθsinϕ\dfrac{x}{y}=\dfrac{\sin \theta }{\sin \phi }, which is the same as obtained above.