Solveeit Logo

Question

Question: Find the value of \[\dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan...

Find the value of tan22θtan2θ1tan22θtan2θ=\dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} =
A. tan3θtanθ\dfrac{tan 3\theta}{tan \theta}
B. cot3θcotθ\dfrac{cot 3\theta}{cot \theta}
C. tan3θtanθ\tan 3\theta \tan \theta
D. cot3θcotθ\cot 3\theta \cot \theta

Explanation

Solution

We use the formula of a2b2=(ab)(a+b){a^2} - {b^2} = (a - b)(a + b) to write both numerator and denominator in simple form. Shuffle and pair the elements of numerator and denominator to form pairs that combine and give trigonometric identities of tan(A+B)\tan (A + B) and tan(AB)\tan (A - B). Add and subtract the angles within to get the answer.

  • Formula of tan(A+B)\tan (A + B)is given as tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
  • Formula of tan(AB)\tan (A - B)is given as tan(AB)=tanAtanB1+tanAtanB\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}

Complete step by step solution:
We have to find the value of tan22θtan2θ1tan22θtan2θ\dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }}............… (1)
Since we know a2b2=(ab)(a+b){a^2} - {b^2} = (a - b)(a + b)
We have a numerator as tan22θtan2θ{\tan ^2}2\theta - {\tan ^2}\theta .
On comparing with the formula a2b2=(ab)(a+b){a^2} - {b^2} = (a - b)(a + b), a=tan2θ,b=tanθa = \tan 2\theta ,b = \tan \theta
tan22θtan2θ=(tan2θtanθ)(tan2θ+tanθ)\Rightarrow {\tan ^2}2\theta - {\tan ^2}\theta = (\tan 2\theta - \tan \theta )(\tan 2\theta + \tan \theta )............… (2)
We have a denominator as 1tan22θtan2θ1 - {\tan ^2}2\theta {\tan ^2}\theta .
On comparing with the formula a2b2=(ab)(a+b){a^2} - {b^2} = (a - b)(a + b), a=1,b=tan2θtanθa = 1,b = \tan 2\theta \tan \theta
1tan22θtan2θ=(1tan2θtanθ)(1+tan2θtanθ)\Rightarrow 1 - {\tan ^2}2\theta {\tan ^2}\theta = (1 - \tan 2\theta \tan \theta )(1 + \tan 2\theta \tan \theta )...............… (3)
Substitute the values of numerator from equation (2)and value of denominator from equation (3) in equation (1)
tan22θtan2θ1tan22θtan2θ=(tan2θtanθ)(tan2θ+tanθ)(1tan2θtanθ)(1+tan2θtanθ)\Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \dfrac{{(\tan 2\theta - \tan \theta )(\tan 2\theta + \tan \theta )}}{{(1 - \tan 2\theta \tan \theta )(1 + \tan 2\theta \tan \theta )}}................… (4)
Now we know the trigonometric identities tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}andtan(AB)=tanAtanB1+tanAtanB\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}.
We pair the terms in RHS of equation (4) in such a way that the given trigonometric identities can be used to form a simpler solution.
\Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \left\\{ {\dfrac{{(\tan 2\theta - \tan \theta )}}{{(1 + \tan 2\theta \tan \theta )}}} \right\\}\left\\{ {\dfrac{{(\tan 2\theta + \tan \theta )}}{{(1 - \tan 2\theta \tan \theta )}}} \right\\}...............… (5)
We can see the first bracket is similar to the identitytan(AB)=tanAtanB1+tanAtanB\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}and the second bracket is similar to the identitytan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}.
We write the simpler form of fractions using the identities.
(tan2θtanθ)(1+tan2θtanθ)=tan(2θθ)\Rightarrow \dfrac{{(\tan 2\theta - \tan \theta )}}{{(1 + \tan 2\theta \tan \theta )}} = \tan (2\theta - \theta ) and (tan2θ+tanθ)(1tan2θtanθ)=tan(2θ+θ)\dfrac{{(\tan 2\theta + \tan \theta )}}{{(1 - \tan 2\theta \tan \theta )}} = \tan (2\theta + \theta )
Substitute the values back in the equation (5)
\Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \left\\{ {\tan (2\theta - \theta )} \right\\}\left\\{ {\tan (2\theta + \theta )} \right\\}
Add and subtract the angles as required in the bracket.
\Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \left\\{ {\tan \theta } \right\\}\left\\{ {\tan 3\theta } \right\\}
tan22θtan2θ1tan22θtan2θ=tan3θtanθ\Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \tan 3\theta \tan \theta
Since RHS is tan3θtanθ\tan 3\theta \tan \theta

\therefore Correct option is C.

Note: Students many times make the mistake of solving the question by general multiplication after they open up the values using a2b2=(ab)(a+b){a^2} - {b^2} = (a - b)(a + b). This process will be very long and will have complex calculations; first we will multiply all the values then cancel terms and then take common factors.
Students many times try to solve the equation by substituting the value for tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} and tan2θ=sin2θcos2θ\tan 2\theta = \dfrac{{\sin 2\theta }}{{\cos 2\theta }}, which will make the solution very complex and students should avoid this process of solving.