Question
Question: Find the value of \[\dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan...
Find the value of 1−tan22θtan2θtan22θ−tan2θ=
A. tanθtan3θ
B. cotθcot3θ
C. tan3θtanθ
D. cot3θcotθ
Solution
We use the formula of a2−b2=(a−b)(a+b) to write both numerator and denominator in simple form. Shuffle and pair the elements of numerator and denominator to form pairs that combine and give trigonometric identities of tan(A+B) and tan(A−B). Add and subtract the angles within to get the answer.
- Formula of tan(A+B)is given as tan(A+B)=1−tanAtanBtanA+tanB
- Formula of tan(A−B)is given as tan(A−B)=1+tanAtanBtanA−tanB
Complete step by step solution:
We have to find the value of 1−tan22θtan2θtan22θ−tan2θ............… (1)
Since we know a2−b2=(a−b)(a+b)
We have a numerator as tan22θ−tan2θ.
On comparing with the formula a2−b2=(a−b)(a+b), a=tan2θ,b=tanθ
⇒tan22θ−tan2θ=(tan2θ−tanθ)(tan2θ+tanθ)............… (2)
We have a denominator as 1−tan22θtan2θ.
On comparing with the formula a2−b2=(a−b)(a+b), a=1,b=tan2θtanθ
⇒1−tan22θtan2θ=(1−tan2θtanθ)(1+tan2θtanθ)...............… (3)
Substitute the values of numerator from equation (2)and value of denominator from equation (3) in equation (1)
⇒1−tan22θtan2θtan22θ−tan2θ=(1−tan2θtanθ)(1+tan2θtanθ)(tan2θ−tanθ)(tan2θ+tanθ)................… (4)
Now we know the trigonometric identities tan(A+B)=1−tanAtanBtanA+tanBandtan(A−B)=1+tanAtanBtanA−tanB.
We pair the terms in RHS of equation (4) in such a way that the given trigonometric identities can be used to form a simpler solution.
\Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \left\\{ {\dfrac{{(\tan 2\theta - \tan \theta )}}{{(1 + \tan 2\theta \tan \theta )}}} \right\\}\left\\{ {\dfrac{{(\tan 2\theta + \tan \theta )}}{{(1 - \tan 2\theta \tan \theta )}}} \right\\}...............… (5)
We can see the first bracket is similar to the identitytan(A−B)=1+tanAtanBtanA−tanBand the second bracket is similar to the identitytan(A+B)=1−tanAtanBtanA+tanB.
We write the simpler form of fractions using the identities.
⇒(1+tan2θtanθ)(tan2θ−tanθ)=tan(2θ−θ) and (1−tan2θtanθ)(tan2θ+tanθ)=tan(2θ+θ)
Substitute the values back in the equation (5)
\Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \left\\{ {\tan (2\theta - \theta )} \right\\}\left\\{ {\tan (2\theta + \theta )} \right\\}
Add and subtract the angles as required in the bracket.
\Rightarrow \dfrac{{{{\tan }^2}2\theta - {{\tan }^2}\theta }}{{1 - {{\tan }^2}2\theta {{\tan }^2}\theta }} = \left\\{ {\tan \theta } \right\\}\left\\{ {\tan 3\theta } \right\\}
⇒1−tan22θtan2θtan22θ−tan2θ=tan3θtanθ
Since RHS is tan3θtanθ
∴Correct option is C.
Note: Students many times make the mistake of solving the question by general multiplication after they open up the values using a2−b2=(a−b)(a+b). This process will be very long and will have complex calculations; first we will multiply all the values then cancel terms and then take common factors.
Students many times try to solve the equation by substituting the value for tanθ=cosθsinθ and tan2θ=cos2θsin2θ, which will make the solution very complex and students should avoid this process of solving.