Solveeit Logo

Question

Question: Find the value of \(\dfrac{\sin \theta +\sin 2\theta }{1+\cos \theta +\cos 2\theta }\) A. \(\dfrac...

Find the value of sinθ+sin2θ1+cosθ+cos2θ\dfrac{\sin \theta +\sin 2\theta }{1+\cos \theta +\cos 2\theta }
A. 12tanθ\dfrac{1}{2}\tan \theta
B. 12cotθ\dfrac{1}{2}\cot \theta
C. tanθ\tan \theta
D. cotθ\cot \theta

Explanation

Solution

At first, we find the value of sin2θ\sin 2\theta in terms of sinθ\sin \theta and cosθ\cos \theta . We then find the value of cos2θ\cos 2\theta in terms of cosθ\cos \theta alone. Then, we take some terms common from the numerator and the denominator. After cancelling out the terms, we get the required answer.

Complete step by step answer:
The trigonometric expression that we are given in this problem is,
sinθ+sin2θ1+cosθ+cos2θ\dfrac{\sin \theta +\sin 2\theta }{1+\cos \theta +\cos 2\theta }
We know the trigonometric identities which say that,
sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B and
cos(A+B)=cosAcosBsinAsinB\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B
Now, if we put the values of A and B both equal to θ\theta , then, we will get,
sin(θ+θ)=sinθcosθ+cosθsinθ sin2θ=2sinθcosθ....(i) \begin{aligned} & \sin \left( \theta +\theta \right)=\sin \theta \cos \theta +\cos \theta \sin \theta \\\ & \Rightarrow \sin 2\theta =2\sin \theta \cos \theta ....\left( i \right) \\\ \end{aligned}
Doing the same for cos(A+B)\cos \left( A+B \right) , we will get,
cos(θ+θ)=cosθcosθsinθsinθ cos2θ=cos2θsin2θ \begin{aligned} & \cos \left( \theta +\theta \right)=\cos \theta \cos \theta -\sin \theta \sin \theta \\\ & \Rightarrow \cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta \\\ \end{aligned}
We also know the trigonometric identity which states that,
sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
Using the above trigonometric identity in the equation for cos2θ\cos 2\theta , we will get,
cos2θ=cos2θ(1cos2θ) cos2θ=2cos2θ1....(ii) \begin{aligned} & \Rightarrow \cos 2\theta ={{\cos }^{2}}\theta -\left( 1-{{\cos }^{2}}\theta \right) \\\ & \Rightarrow \cos 2\theta =2{{\cos }^{2}}\theta -1....\left( ii \right) \\\ \end{aligned}
Using expressions (i) and (ii) in our given expression, we will get,
sinθ+sin2θ1+cosθ+cos2θ=sinθ+2sinθcosθ1+cosθ+2cos2θ1\Rightarrow \dfrac{\sin \theta +\sin 2\theta }{1+\cos \theta +\cos 2\theta }=\dfrac{\sin \theta +2\sin \theta \cos \theta }{1+\cos \theta +2{{\cos }^{2}}\theta -1}
Taking sinθ\sin \theta common from the numerator and cosθ\cos \theta common from the denominator, we will get,
sinθ+sin2θ1+cosθ+cos2θ=sinθ(1+2cosθ)cosθ(1+2cosθ)\Rightarrow \dfrac{\sin \theta +\sin 2\theta }{1+\cos \theta +\cos 2\theta }=\dfrac{\sin \theta \left( 1+2\cos \theta \right)}{\cos \theta \left( 1+2\cos \theta \right)}
Cancelling out the (1+2cosθ)\left( 1+2\cos \theta \right) terms from the numerator and denominator, we will get,
sinθ+sin2θ1+cosθ+cos2θ=sinθcosθ\Rightarrow \dfrac{\sin \theta +\sin 2\theta }{1+\cos \theta +\cos 2\theta }=\dfrac{\sin \theta }{\cos \theta }
Now, we are well aware of the fact that the ratio of sinθ\sin \theta and cosθ\cos \theta is another trigonometric ratio, which is called tangent, and is denoted by tanθ\tan \theta . So,
sinθ+sin2θ1+cosθ+cos2θ=tanθ\Rightarrow \dfrac{\sin \theta +\sin 2\theta }{1+\cos \theta +\cos 2\theta }=\tan \theta
Thus, we can conclude that the given trigonometric expression sinθ+sin2θ1+cosθ+cos2θ\dfrac{\sin \theta +\sin 2\theta }{1+\cos \theta +\cos 2\theta } is equal to tanθ\tan \theta .

So, the correct answer is “Option C”.

Note: For solving this problem, we have started from the very basics and then concluded it. But, in the examinations, there would not be so much time available. So, we have to memorise some quick trigonometric formulae like,
cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1 and
sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta
Remembering these formulas will help us solve these problems in the blink of an eye.