Solveeit Logo

Question

Question: Find the value of \(\dfrac{\sin {{30}^{0}}+\tan {{45}^{0}}-\csc {{60}^{0}}}{\cot {{45}^{0}}+\cos {{6...

Find the value of sin300+tan450csc600cot450+cos600sec300\dfrac{\sin {{30}^{0}}+\tan {{45}^{0}}-\csc {{60}^{0}}}{\cot {{45}^{0}}+\cos {{60}^{0}}-\sec {{30}^{0}}}.

Explanation

Solution

Hint: For solving this as we can see that in the given expression there are some standard trigonometric ratios. So, we will put the value of each term in the given expression directly and then solve for the correct answer.

Complete step-by-step answer:
Given:
We have to evaluate the value of sin300+tan450csc600cot450+cos600sec300\dfrac{\sin {{30}^{0}}+\tan {{45}^{0}}-\csc {{60}^{0}}}{\cot {{45}^{0}}+\cos {{60}^{0}}-\sec {{30}^{0}}}.
Now, before we proceed first we should know the following results:
sin300=12.............(1) cos600=12.............(2) cos300=32...........(3) sin600=32............(4) tan450=1................(5) cscθ=1sinθ.............(6) secθ=1cosθ.............(7) cotθ=1tanθ..............(8) \begin{aligned} & \sin {{30}^{0}}=\dfrac{1}{2}.............\left( 1 \right) \\\ & \cos {{60}^{0}}=\dfrac{1}{2}.............\left( 2 \right) \\\ & \cos {{30}^{0}}=\dfrac{\sqrt{3}}{2}...........\left( 3 \right) \\\ & \sin {{60}^{0}}=\dfrac{\sqrt{3}}{2}............\left( 4 \right) \\\ & \tan {{45}^{0}}=1................\left( 5 \right) \\\ & \csc \theta =\dfrac{1}{\sin \theta }.............\left( 6 \right) \\\ & \sec \theta =\dfrac{1}{\cos \theta }.............\left( 7 \right) \\\ & \cot \theta =\dfrac{1}{\tan \theta }..............\left( 8 \right) \\\ \end{aligned}
Now, from the above results, we can easily solve this question. Using equation (5) and equation (3) to find the value of csc600\csc {{60}^{0}} . Then,
cscθ=1sinθ csc600=1sin600 csc600=23................(9) \begin{aligned} & \csc \theta =\dfrac{1}{\sin \theta } \\\ & \Rightarrow \csc {{60}^{0}}=\dfrac{1}{\sin {{60}^{0}}} \\\ & \Rightarrow \csc {{60}^{0}}=\dfrac{2}{\sqrt{3}}................\left( 9 \right) \\\ \end{aligned}
Now, using equation (4) and equation (7) to find the value of cot450\cot {{45}^{0}} . Then,
cotθ=1tanθ cot450=1tan450 cot450=1..................(10) \begin{aligned} & \cot \theta =\dfrac{1}{\tan \theta } \\\ & \Rightarrow \cot {{45}^{0}}=\dfrac{1}{\tan {{45}^{0}}} \\\ & \Rightarrow \cot {{45}^{0}}=1..................\left( 10 \right) \\\ \end{aligned}
Now, using equation (3) and equation (7) to find the value of sec300\sec {{30}^{0}} . Then,
secθ=1cosθ sec300=1cos300 sec300=23................(11) \begin{aligned} & \sec \theta =\dfrac{1}{\cos \theta } \\\ & \Rightarrow \sec {{30}^{0}}=\dfrac{1}{\cos {{30}^{0}}} \\\ & \Rightarrow \sec {{30}^{0}}=\dfrac{2}{\sqrt{3}}................\left( 11 \right) \\\ \end{aligned}
Now, we will directly put the value of each term in sin300+tan450csc600cot450+cos600sec300\dfrac{\sin {{30}^{0}}+\tan {{45}^{0}}-\csc {{60}^{0}}}{\cot {{45}^{0}}+\cos {{60}^{0}}-\sec {{30}^{0}}} from the equation (1), equation (2), equation (5), equation (9), equation (10) and equation (11). Then,
sin300+tan450csc600cot450+cos600sec300 (12+1231+1223)=(32233223) 1 \begin{aligned} & \dfrac{\sin {{30}^{0}}+\tan {{45}^{0}}-\csc {{60}^{0}}}{\cot {{45}^{0}}+\cos {{60}^{0}}-\sec {{30}^{0}}} \\\ & \Rightarrow \left( \dfrac{\dfrac{1}{2}+1-\dfrac{2}{\sqrt{3}}}{1+\dfrac{1}{2}-\dfrac{2}{\sqrt{3}}} \right)=\left( \dfrac{\dfrac{3}{2}-\dfrac{2}{\sqrt{3}}}{\dfrac{3}{2}-\dfrac{2}{\sqrt{3}}} \right) \\\ & \Rightarrow 1 \\\ \end{aligned}
Thus, from the above calculation, we can say that sin300+tan450csc600cot450+cos600sec300\dfrac{\sin {{30}^{0}}+\tan {{45}^{0}}-\csc {{60}^{0}}}{\cot {{45}^{0}}+\cos {{60}^{0}}-\sec {{30}^{0}}} is equal to 1.

Hint: The question was very easy to solve if we know the values of each term then by avoiding calculation mistakes we can get the correct answer. Moreover, there is another short by which one can directly answer even if we don’t know the values. If α\alpha and β\beta are two angles such that, α+β=900\alpha +\beta ={{90}^{0}}. Then, sinα=cosβ\sin \alpha =\cos \beta , tanα=cotβ\tan \alpha =\cot \beta and secα=cscβ\sec \alpha =\csc \beta . When we put the proper values of α\alpha and β\beta then we can analyse whether the numerator and denominator of the given expression is equal.