Solveeit Logo

Question

Question: Find the value of \(\dfrac{dy}{dx}\), where \(\cot \left( xy \right)+xy=y\)....

Find the value of dydx\dfrac{dy}{dx}, where cot(xy)+xy=y\cot \left( xy \right)+xy=y.

Explanation

Solution

For this problem we will first write the differentiation of each term in the given equation, and then find the differentiation values of each term and substitute them in the given equation. We have function like f(g(x))f\left( g\left( x \right) \right), so we will use the formula ddx[f(g(x))]=f(g(x)).g(x)\dfrac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right) to differentiate the term cot(xy)\cot \left( xy \right). To find the differentiation of the term xyxy we will use uvuv formula i.e. (uv)=uv+vu{{\left( uv \right)}^{'}}={{u}^{'}}v+{{v}^{'}}u. After that we will add the differentiation values of cot(xy)\cot \left( xy \right) , xyxy and equate it to the differentiation of yy and then by simplifying we will get the value of dydx\dfrac{dy}{dx}.

Complete step-by-step solution
Given that, cot(xy)+xy=y\cot \left( xy \right)+xy=y
Differentiating the above equation with respect to xx, we will get
ddx[cot(xy)+xy]=dydx ddx[cot(xy)]+ddx(xy)=dydx...(i) \begin{aligned} & \dfrac{d}{dx}\left[ \cot \left( xy \right)+xy \right]=\dfrac{dy}{dx} \\\ & \dfrac{d}{dx}\left[ \cot \left( xy \right) \right]+\dfrac{d}{dx}\left( xy \right)=\dfrac{dy}{dx}...\left( \text{i} \right) \\\ \end{aligned}
Here we have the terms ddx[cot(xy)]\dfrac{d}{dx}\left[ \cot \left( xy \right) \right], ddx(xy)\dfrac{d}{dx}\left( xy \right). Now we are going to find the values of each term individually.
The value of term ddx[cot(xy)]\dfrac{d}{dx}\left[ \cot \left( xy \right) \right] is given by using the formula ddx[f(g(x))]=f(g(x)).g(x)\dfrac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right) by substituting f(g(x))=cot(xy)f\left( g\left( x \right) \right)=\cot \left( xy \right), g(x)=xyg\left( x \right)=xy, then we will get
ddx[cot(xy)]=ddx(cotxy).ddx(xy)\dfrac{d}{dx}\left[ \cot \left( xy \right) \right]=\dfrac{d}{dx}\left( \cot xy \right).\dfrac{d}{dx}\left( xy \right)
We know that ddx(cotx)=csc2x\dfrac{d}{dx}\left( \cot x \right)=-{{\csc }^{2}}x, then
ddx[cot(xy)]=csc2xy.ddx(xy)....(ii)\dfrac{d}{dx}\left[ \cot \left( xy \right) \right]=-{{\csc }^{2}}xy.\dfrac{d}{dx}\left( xy \right)....\left( \text{ii} \right)
Now the value of ddx(xy)\dfrac{d}{dx}\left( xy \right) can be obtained by using the formula (uv)=uv+vu{{\left( uv \right)}^{'}}={{u}^{'}}v+{{v}^{'}}u where u=xu=x, v=yv=y.
ddx(xy)=y.dxdx+x.dydx ddx(xy)=y+xdydx \begin{aligned} & \therefore \dfrac{d}{dx}\left( xy \right)=y.\dfrac{dx}{dx}+x.\dfrac{dy}{dx} \\\ & \Rightarrow \dfrac{d}{dx}\left( xy \right)=y+x\dfrac{dy}{dx} \\\ \end{aligned}
From the value of ddx(xy)\dfrac{d}{dx}\left( xy \right), the value of ddx[cot(xy)]\dfrac{d}{dx}\left[ \cot \left( xy \right) \right] is obtained using equation (ii)\left( \text{ii} \right).
ddx[cot(xy)]=csc2xy(y+xdydx)\therefore \dfrac{d}{dx}\left[ \cot \left( xy \right) \right]=-{{\csc }^{2}}xy\left( y+x\dfrac{dy}{dx} \right)
Now we have the values of both ddx[cot(xy)]\dfrac{d}{dx}\left[ \cot \left( xy \right) \right], ddx(xy)\dfrac{d}{dx}\left( xy \right). Substituting these values in equation (i)\left( \text{i} \right).
dydx=ddx[cot(xy)]+ddx(xy) dydx=csc2xy(y+xdydx)+y+xdydx \begin{aligned} & \dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \cot \left( xy \right) \right]+\dfrac{d}{dx}\left( xy \right) \\\ & \Rightarrow \dfrac{dy}{dx}=-{{\csc }^{2}}xy\left( y+x\dfrac{dy}{dx} \right)+y+x\dfrac{dy}{dx} \\\ \end{aligned}
Expand the term csc2xy(y+xdydx)-{{\csc }^{2}}xy\left( y+x\dfrac{dy}{dx} \right) by using multiplication distributive law, then we will get
dydx=ycsc2xyxcsc2xydydx+y+xdydx\dfrac{dy}{dx}=-y{{\csc }^{2}}xy-x{{\csc }^{2}}xy\dfrac{dy}{dx}+y+x\dfrac{dy}{dx}
Rearranging the terms in the above equation, so that all the terms including the function dydx\dfrac{dy}{dx} are at one side and remaining terms at one side, then we will have
ycsc2xyy=xcsc2xydydx+xdydxdydxy{{\csc }^{2}}xy-y=-x{{\csc }^{2}}xy\dfrac{dy}{dx}+x\dfrac{dy}{dx}-\dfrac{dy}{dx}
Taking common yy from ycsc2xyyy{{\csc }^{2}}xy-y and dydx\dfrac{dy}{dx} from xcsc2xydydx+xdydxdydx-x{{\csc }^{2}}xy\dfrac{dy}{dx}+x\dfrac{dy}{dx}-\dfrac{dy}{dx}, then we will have
y(csc2xy1)=(xcsc2xy+x1)dydxy\left( {{\csc }^{2}}xy-1 \right)=\left( -x{{\csc }^{2}}xy+x-1 \right)\dfrac{dy}{dx}
Again taking xx common from the term xcsc2xy+x-x{{\csc }^{2}}xy+x, then we will get
y(csc2xy1)=[1x(csc2xy1)]dydxy\left( {{\csc }^{2}}xy-1 \right)=\left[ -1-x\left( {{\csc }^{2}}xy-1 \right) \right]\dfrac{dy}{dx}
From the trigonometric identity csc2xcot2x=1{{\csc }^{2}}x-{{\cot }^{2}}x=1, we have csc2xy1=cot2xy{{\csc }^{2}}xy-1={{\cot }^{2}}xy, then we will get
ycot2xy=(1xcot2xy)dydx ycot2xy=(1+xcot2xy)dydx dydx=ycot2xy1+xcot2xy \begin{aligned} & y{{\cot }^{2}}xy=\left( -1-x{{\cot }^{2}}xy \right)\dfrac{dy}{dx} \\\ & \Rightarrow y{{\cot }^{2}}xy=-\left( 1+x{{\cot }^{2}}xy \right)\dfrac{dy}{dx} \\\ & \Rightarrow \dfrac{dy}{dx}=-\dfrac{y{{\cot }^{2}}xy}{1+x{{\cot }^{2}}xy} \\\ \end{aligned}

Note: We can also find the value of ddx[cot(xy)]\dfrac{d}{dx}\left[ \cot \left( xy \right) \right] by using a substitution method. In this method we will substituting xy=txy=t
Differentiating above value with respect to we have
ddx(xy)=dtdx x+ydydx=dtdx \begin{aligned} & \dfrac{d}{dx}\left( xy \right)=\dfrac{dt}{dx} \\\ & \Rightarrow x+y\dfrac{dy}{dx}=\dfrac{dt}{dx} \\\ \end{aligned}
Now the value ddx[cot(xy)]\dfrac{d}{dx}\left[ \cot \left( xy \right) \right] is
ddx[cot(xy)]=ddx(cott) ddx[cot(xy)]=csc2t.dtdx ddx[cot(xy)]=csc2(xy).(x+ydydx) \begin{aligned} & \dfrac{d}{dx}\left[ \cot \left( xy \right) \right]=\dfrac{d}{dx}\left( \cot t \right) \\\ & \Rightarrow \dfrac{d}{dx}\left[ \cot \left( xy \right) \right]=-{{\csc }^{2}}t.\dfrac{dt}{dx} \\\ & \Rightarrow \dfrac{d}{dx}\left[ \cot \left( xy \right) \right]=-{{\csc }^{2}}\left( xy \right).\left( x+y\dfrac{dy}{dx} \right) \\\ \end{aligned}
From both the methods we got the same value.