Solveeit Logo

Question

Question: Find the value of \(\dfrac{{dy}}{{dx}}\) if \({x^p}{y^q} = {\left( {x + y} \right)^{p + q}}\). (A)...

Find the value of dydx\dfrac{{dy}}{{dx}} if xpyq=(x+y)p+q{x^p}{y^q} = {\left( {x + y} \right)^{p + q}}.
(A) xy - \dfrac{x}{y}
(B) xy\dfrac{x}{y}
(C) yx - \dfrac{y}{x}
(D) yx\dfrac{y}{x}

Explanation

Solution

Hint: Take logarithm on both sides of the equation. Use formulae logmn=logm+logn\log mn = \log m + \log n and logmn=nlogm\log {m^n} = n\log m and then differentiate both sides with respect to xx.

Complete step-by-step answer:
According to question, the given equation is:
xpyq=(x+y)p+q\Rightarrow {x^p}{y^q} = {\left( {x + y} \right)^{p + q}}.
Taking logarithm on both sides of this equation, we’ll get:
log(xpyq)=log(x+y)p+q,\Rightarrow \log \left( {{x^p}{y^q}} \right) = \log {\left( {x + y} \right)^{p + q}},
We know that logmn=logm+logn\log mn = \log m + \log n and logmn=nlogm\log {m^n} = n\log m, applying these formulae, we’ll get:
logxp+logyq=(p+q)log(x+y), plogx+qlogy=(p+q)log(x+y)  \Rightarrow \log {x^p} + \log {y^q} = \left( {p + q} \right)\log \left( {x + y} \right), \\\ \Rightarrow p\log x + q\log y = \left( {p + q} \right)\log \left( {x + y} \right) \\\
Now, differentiating both sides with respect to xx, we’ll get:

ddx(plogx+qlogy)=ddx[(p+q)log(x+y)], pddxlogx+qddxlogy=(p+q)ddxlog(x+y).....(i)  \Rightarrow \dfrac{d}{{dx}}\left( {p\log x + q\log y} \right) = \dfrac{d}{{dx}}\left[ {\left( {p + q} \right)\log \left( {x + y} \right)} \right], \\\ \Rightarrow p\dfrac{d}{{dx}}\log x + q\dfrac{d}{{dx}}\log y = \left( {p + q} \right)\dfrac{d}{{dx}}\log \left( {x + y} \right) .....(i) \\\

We know that ddxlogx=1x\dfrac{d}{{dx}}\log x = \dfrac{1}{x}. And for ddx(x+y)\dfrac{d}{{dx}}\left( {x + y} \right), we will use chain rule of differentiation which is:
ddxf(g(x))=f(g(x))×ddxg(x)\Rightarrow \dfrac{d}{{dx}}f\left( {g\left( x \right)} \right) = f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}g\left( x \right).
Using these formulae in equation (i)(i), we’ll get:

px+qydydx=(p+q)[1(x+y)×ddx(x+y)], px+qydydx=(p+q)(x+y)×(1+dydx),  \Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \left( {p + q} \right)\left[ {\dfrac{1}{{\left( {x + y} \right)}} \times \dfrac{d}{{dx}}\left( {x + y} \right)} \right], \\\ \Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} \times \left( {1 + \dfrac{{dy}}{{dx}}} \right), \\\

px+qydydx=(p+q)(x+y)+(p+q)(x+y)dydx, \Rightarrow \dfrac{p}{x} + \dfrac{q}{y}\dfrac{{dy}}{{dx}} = \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} + \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}}\dfrac{{dy}}{{dx}},
Now separating the terms having dydx\dfrac{{dy}}{{dx}} on one side, we’ll get:

px(p+q)(x+y)=[(p+q)(x+y)qy]dydx, px+pypxqxx(x+y)=(py+qyqxqy)y(x+y)dydx, pyqxx=(pyqx)ydydx, 1ydydx=1x, dydx=yx  \Rightarrow \dfrac{p}{x} - \dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} = \left[ {\dfrac{{\left( {p + q} \right)}}{{\left( {x + y} \right)}} - \dfrac{q}{y}} \right]\dfrac{{dy}}{{dx}}, \\\ \Rightarrow \dfrac{{px + py - px - qx}}{{x\left( {x + y} \right)}} = \dfrac{{\left( {py + qy - qx - qy} \right)}}{{y\left( {x + y} \right)}}\dfrac{{dy}}{{dx}}, \\\ \Rightarrow \dfrac{{py - qx}}{x} = \dfrac{{\left( {py - qx} \right)}}{y}\dfrac{{dy}}{{dx}}, \\\ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{x}, \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\\

Thus, the value of dydx\dfrac{{dy}}{{dx}} is yx\dfrac{y}{x}. (D) is the correct option.

Note: We can also directly differentiate the equation xpyq=(x+y)p+q{x^p}{y^q} = {\left( {x + y} \right)^{p + q}} without using logarithm:
ddx(xpyq)=ddx(x+y)p+q.....(ii)\Rightarrow \dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}} .....(ii)
For ddx(xpyq)\dfrac{d}{{dx}}\left( {{x^p}{y^q}} \right), we will use product rule of differentiation which is given as:
ddx[f(x)g(x)]=f(x)ddxg(x)+g(x)ddxf(x)\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)
And for ddx(x+y)p+q\dfrac{d}{{dx}}{\left( {x + y} \right)^{p + q}}, we will use formula ddxxn=nxn1\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}} and then chain rule discussed above.
Using all these results in equation (ii)(ii), we’ll get:
xpddxyq+yqddxxp=(p+q)(x+y)p+q1ddx(x+y)\Rightarrow {x^p}\dfrac{d}{{dx}}{y^q} + {y^q}\dfrac{d}{{dx}}{x^p} = \left( {p + q} \right){\left( {x + y} \right)^{p + q - 1}}\dfrac{d}{{dx}}\left( {x + y} \right)
When we differentiate the terms and separate them, we’ll get the same result as we have found above.