Solveeit Logo

Question

Question: Find the value of \[\dfrac{dx}{dy}\] at y=1, if \[\sqrt{x}+\sqrt{y}=4\]....

Find the value of dxdy\dfrac{dx}{dy} at y=1, if x+y=4\sqrt{x}+\sqrt{y}=4.

Explanation

Solution

Hint: The derivative of x\sqrt{x} is given as d(x)dx=12x\dfrac{d(\sqrt{x})}{dx}=\dfrac{1}{2\sqrt{x}}. Using this we can find out the solution of this question.
Complete step-by-step answer:
Here the given equation x+y=4\sqrt{x}+\sqrt{y}=4
Taking y\sqrt{y} to the RHS of the equation, we get
x=4y\sqrt{x}=4-\sqrt{y}.
Hence, we get a function xx in terms of variable yy, or we can say x=f(y)\sqrt{x}=f(y).
Now, we will differentiate both sides of the equation with respect to yy.
On differentiating both sides of the equation with respect to yy, we get,
12x.dxdy=12y\dfrac{1}{2\sqrt{x}}.\dfrac{dx}{dy}=\dfrac{-1}{2\sqrt{y}}
So, dxdy=12y÷12x\dfrac{dx}{dy}=\dfrac{-1}{2\sqrt{y}}\div \dfrac{1}{2\sqrt{x}}
Now, in the question it is given that x+y=4\sqrt{x}+\sqrt{y}=4.
So, at y=1y=1, we get x+1=4\sqrt{x}+\sqrt{1}=4
\Rightarrow the value of x=4±1\sqrt{x}=4\pm 1 and the value ofy=±1\sqrt{y}=\pm 1
Hence, we have four cases:
Case 1: x=41=3\sqrt{x}=4-1=3 and y=1\sqrt{y}=1
Now, we will substitute x=3\sqrt{x}=3 and y=1\sqrt{y}=1 in the expression of dxdy\dfrac{dx}{dy}.
On substituting x=3\sqrt{x}=3andy=1\sqrt{y}=1 in the expression of dxdy\dfrac{dx}{dy}, we get,
(dxdy)y=1=121÷12(3){{(\dfrac{dx}{dy})}_{y=1}}=\dfrac{-1}{2\sqrt{1}}\div \dfrac{1}{2(3)}
=12÷16=\dfrac{-1}{2}\div \dfrac{1}{6}

& =\dfrac{-1}{2}\times 6 \\\ & =-3 \\\ \end{aligned}$$ Case 2: $$\sqrt{x}=4-1=3$$ and $$\sqrt{y}=-1$$ Now, we will substitute $$\sqrt{x}=3$$ and $$\sqrt{y}=-1$$ in the expression of $$\dfrac{dx}{dy}$$. On substituting $$\sqrt{x}=3$$ and $$\sqrt{y}=-1$$ in the expression of $$\dfrac{dx}{dy}$$, we get, $${{(\dfrac{dx}{dy})}_{y=1}}=\dfrac{-1}{2\sqrt{1}}\div \dfrac{1}{2(3)}$$ $$=\dfrac{-1}{-2}\div \dfrac{1}{6}$$ $$\begin{aligned} & =\dfrac{1}{2}\times 6 \\\ & =3 \\\ \end{aligned}$$ Case 3:$$\sqrt{x}=4+1=5$$ and $$\sqrt{y}=1$$ Now, we will substitute $$\sqrt{x}=5$$ and $$\sqrt{y}=1$$ in the expression of $$\dfrac{dx}{dy}$$. On substituting $$\sqrt{x}=5$$ and $$\sqrt{y}=1$$ in the expression of $$\dfrac{dx}{dy}$$, we get, $${{(\dfrac{dx}{dy})}_{y=1}}=\dfrac{-1}{2\sqrt{1}}\div \dfrac{1}{2(5)}$$ $$=\dfrac{-1}{2}\div \dfrac{1}{10}$$ $$\begin{aligned} & =\dfrac{-1}{2}\times 10 \\\ & =-5 \\\ \end{aligned}$$ Case 4:$$\sqrt{x}=4+1=5$$ and $$\sqrt{y}=-1$$ Now, we will substitute $$\sqrt{x}=5$$ and $$\sqrt{y}=-1$$ in the expression of $$\dfrac{dx}{dy}$$. On substituting $$\sqrt{x}=5$$ and $$\sqrt{y}=-1$$ in the expression of $$\dfrac{dx}{dy}$$, we get, $${{(\dfrac{dx}{dy})}_{y=1}}=\dfrac{-1}{2\sqrt{1}}\div \dfrac{1}{2(5)}$$ $$=\dfrac{-1}{-2}\div \dfrac{1}{10}$$ $$\begin{aligned} & =\dfrac{1}{2}\times 10 \\\ & =5 \\\ \end{aligned}$$ Hence, the value of the derivative $$\dfrac{dx}{dy}$$ is equal to $$(-3)$$, $$3,(-5)$$ and $$5$$. Note: The question has asked to find the value of $$\dfrac{dx}{dy}$$ and not $$\dfrac{dy}{dx}$$. The two can often be confused. $$\dfrac{dy}{dx}$$ is the derivative of function $$y$$ with respect to variable $$x$$ whereas $$\dfrac{dx}{dy}$$ is the derivative of function $$x$$ with respect to variable $$y$$. The value of both is not the same. So, students should be careful in such cases.