Solveeit Logo

Question

Question: Find the value of \[\dfrac{d}{{dx}}({x^x})\] A) \[{x^x}\log (\dfrac{e}{x})\] B) \[{x^x}\log ex\...

Find the value of ddx(xx)\dfrac{d}{{dx}}({x^x})
A) xxlog(ex){x^x}\log (\dfrac{e}{x})
B) xxlogex{x^x}\log ex
C) logex\log ex
D) xxlogx{x^x}\log x

Explanation

Solution

Here we assume the given function as a variable. Apply log on both sides of the equation and open the right side using the property of logarithm. Differentiate both sides with respect to x keeping in mind the variable we assumed is also a function of x. Apply product rule of differentiation on RHS and chain rule of differentiation on LHS.

Formula used:
*logmn=nlogm\log {m^n} = n\log m
*logm+logn=logmn\log m + \log n = \log mn

  • Product rule of differentiation:ddx(ab)=addx(b)+bddx(a)\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}(b) + b\dfrac{d}{{dx}}(a)
  • Chain rule of differentiation:ddxg(f(x))=ddxg(f(x))×ddxf(x)\dfrac{d}{{dx}}g\left( {f(x)} \right) = \dfrac{d}{{dx}}g(f(x)) \times \dfrac{d}{{dx}}f(x)

Complete step-by-step answer:
We have to findddx(xx)\dfrac{d}{{dx}}({x^x})
Here the function is xx{x^x}
Let us assume the function equal to a variable y.
Let y=xxy = {x^x} … (1)
Now we apply log function on both sides of the equation.
logy=log(xx)\Rightarrow \log y = \log ({x^x})
Use the property logmn=nlogm\log {m^n} = n\log m where m is x and n is x.
logy=x(logx)\Rightarrow \log y = x(\log x)
Now differentiate both sides of the equation with respect to x
ddx(logy)=ddx(x(logx))\Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {x(\log x)} \right)
Apply chain rule of differentiation in LHs of the equation
Chain rule gives usddxg(f(x))=ddxg(f(x))×ddxf(x)\dfrac{d}{{dx}}g\left( {f(x)} \right) = \dfrac{d}{{dx}}g(f(x)) \times \dfrac{d}{{dx}}f(x).
Here g(f(x))=log(y),f(x)=yg(f(x)) = \log (y),f(x) = y, then the equation becomes
ddx(logy)×dydx=ddx(x(logx))\Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) \times \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {x(\log x)} \right)
We know ddxlogx=1x\dfrac{d}{{dx}}\log x = \dfrac{1}{x}
1y×dydx=ddx(x(logx))\Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {x(\log x)} \right)
Now apply product rule of differentiation in RHS of the equation
Product rule gives usddx(ab)=addx(b)+bddx(a)\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}(b) + b\dfrac{d}{{dx}}(a)
Herea=x,b=logxa = x,b = \log x, then the equation becomes
1y×dydx=xddxlogx+logxddxx\Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = x\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}x
Substitute the valuesddxlogx=1x\dfrac{d}{{dx}}\log x = \dfrac{1}{x}anddxdx=1\dfrac{{dx}}{{dx}} = 1in RHS of the equation
1y×dydx=x×1x+logx×1\Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = x \times \dfrac{1}{x} + \log x \times 1
Cancel same terms from numerator and denominator
1y×dydx=1+logx\Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = 1 + \log x
Multiply both sides of the equation by y
y×1y×dydx=y×(1+logx)\Rightarrow y \times \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = y \times (1 + \log x)
Cancel same function from numerator and denominator in LHS of the equation
dydx=y(1+logx)\Rightarrow \dfrac{{dy}}{{dx}} = y(1 + \log x)
Substitute the value of y=xxy = {x^x}from equation (1)
ddx(xx)=xx(1+logx)\Rightarrow \dfrac{d}{{dx}}({x^x}) = {x^x}(1 + \log x)
Now we can write loge=1\log e = 1in RHs of the equation
ddx(xx)=xx(loge+logx)\Rightarrow \dfrac{d}{{dx}}({x^x}) = {x^x}(\log e + \log x)
Use the property logm+logn=logmn\log m + \log n = \log mnin RHs of the equation
ddx(xx)=xx(logex)\Rightarrow \dfrac{d}{{dx}}({x^x}) = {x^x}(\log ex)

So, the correct answer is “Option B”.

Note: Students might get stuck at the point where the answer comes out xx(1+logx){x^x}(1 + \log x), but we don’t have a similar option available to choose from. We can substitute the value of loge=1\log e = 1 as logarithm cancels out the exponential function giving the answer 1. Many students make the mistake of not substituting the value of the assumed variable back in the solution in the end.