Solveeit Logo

Question

Question: Find the value of \(\dfrac{{{d}^{25}}y}{d{{x}^{25}}}\), If \(y={{x}^{2}}\sin x\)....

Find the value of d25ydx25\dfrac{{{d}^{25}}y}{d{{x}^{25}}}, If y=x2sinxy={{x}^{2}}\sin x.

Explanation

Solution

Hint: The differentiation to be found can be found using the Leibnitz rule for differentiation. The Leibnitz rule for finding successive differentiation can be stated as the derivative of nth{{n}^{th}} order is given by the following rule:
If y=u.vy=u.v then dndxn(u.v)=uvn+nc1u1vn1+nc2u2vn2+.......+ncrurvnr+....+unv\frac{{{d}^{n}}}{d{{x}^{n}}}(u.v)=u{{v}_{n}}+{}^{n}{{c}_{1}}{{u}_{1}}{{v}_{n-1}}+{}^{n}{{c}_{2}}{{u}_{2}}{{v}_{n-2}}+.......+{}^{n}{{c}_{r}}{{u}_{r}}{{v}_{n-r}}+....+{{u}_{n}}{{v}_{{}}}

Complete step-by-step solution -
Here We have to find d25ydx25\dfrac{{{d}^{25}}y}{d{{x}^{25}}} .
The product rule is a formula used to find the derivatives of products of two or more functions. It may be stated as,
(f.g)=f.g+f.g{{(f.g)}^{'}}={{f}^{'}}.g+f.{{g}^{'}}
or in Leibnitz's notation,
d(u.v)dx=dudx.v+u.dvdx\dfrac{d(u.v)}{dx}=\dfrac{du}{dx}.v+u.\dfrac{dv}{dx}
In different notation it can be written as,
d(uv)=udv+vdud(uv)=udv+vdu
The product rule can be considered a special case of the chain rule for several variables.
So the chain rule is,
d(ab)dx=(ab)adadx+(ab)bdbdx\dfrac{d(ab)}{dx}=\dfrac{\partial (ab)}{\partial a}\dfrac{da}{dx}+\dfrac{\partial (ab)}{\partial b}\dfrac{db}{dx}
So we have to use the Leibnitz theorem,
ddx(uv)=dudxv+udvdx.{\displaystyle {\dfrac {d}{dx}}(u\cdot v)={\dfrac {du}{dx}}\cdot v+u\cdot {\dfrac {dv}{dx}}.} So Leibnitz Theorem provides a useful formula for computing the nth{{n}^{th}} derivative of a product of two functions. This theorem (Leibnitz theorem) is also called a theorem for successive differentiation.
This theorem is used for finding the nth{{n}^{th}} derivative of a product. The Leibnitz formula expresses the derivative on nth{{n}^{th}} order of the product of two functions.
If y=u.vy=u.v then dndxn(u.v)=uvn+nc1u1vn1+nc2u2vn2+.......+ncrurvnr+....+unv\dfrac{{{d}^{n}}}{d{{x}^{n}}}(u.v)=u{{v}_{n}}+{}^{n}{{c}_{1}}{{u}_{1}}{{v}_{n-1}}+{}^{n}{{c}_{2}}{{u}_{2}}{{v}_{n-2}}+.......+{}^{n}{{c}_{r}}{{u}_{r}}{{v}_{n-r}}+....+{{u}_{n}}{{v}_{{}}} ……(1)
Now Let us consider u=x2u={{x}^{2}} and v=sinxv=\sin x .
Here now differentiating uu for first derivative u1{{u}_{1}} ,then second derivative u2{{u}_{2}} and then third derivative u3{{u}_{3}} .
So we get,
So u1=2x{{u}_{1}}=2x, u2=2{{u}_{2}}=2,u3=0{{u}_{3}}=0 …..(2)
Also differentiating for vv , For first , second, nth{{n}^{th}} derivatives and (n1)th{{(n-1)}^{th}} derivatives,
So we get the derivatives as,
same for v1=cosx=sin(π2+x){{v}_{1}}=\cos x=\sin \left( \dfrac{\pi }{2}+x \right) , v2=cos(π2+x)=sin(π2+π2+x)=sin(2π2+x){{v}_{2}}=\cos \left( \dfrac{\pi }{2}+x \right)=\sin \left( \dfrac{\pi }{2}+\dfrac{\pi }{2}+x \right)=\sin \left( \dfrac{2\pi }{2}+x \right) ,
So above I have made conversions don’t jumble in this conversions.
So at vn=sin(nπ2+x){{v}_{n}}=\sin \left( \dfrac{n\pi }{2}+x \right) , vn1=sin((n1)π2+x){{v}_{n-1}}=\sin \left( \dfrac{(n-1)\pi }{2}+x \right) , vn2=sin((n2)π2+x){{v}_{n-2}}=\sin \left( \dfrac{(n-2)\pi }{2}+x \right) ………(3)
As we have find out the values of u1,u2,u3{{u}_{1}},{{u}_{2}},{{u}_{3}} and vn,vn1,vn2{{v}_{n}},{{v}_{n-1}},{{v}_{n-2}} ,
So substituting (2) and (3) in (1), that is substituting in formula of Leibnitz theorem,
So, We get,
dndxn((x2)sinx)=x2sin(nπ2+x)+nc12xsin((n1)π2+x)+nc22sin((n2)π2+x)\dfrac{{{d}^{n}}}{d{{x}^{n}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{n\pi }{2}+x \right)+{}^{n}{{c}_{1}}2x\sin \left( \dfrac{(n-1)\pi }{2}+x \right)+{}^{n}{{c}_{2}}2\sin \left( \dfrac{(n-2)\pi }{2}+x \right)
dndxn((x2)sinx)=x2sin(nπ2+x)+2nxsin((n1)π2+x)+n(n1)22sin((n2)π2+x)\dfrac{{{d}^{n}}}{d{{x}^{n}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{n\pi }{2}+x \right)+2nx\sin \left( \dfrac{(n-1)\pi }{2}+x \right)+\dfrac{n(n-1)}{2}2\sin \left( \dfrac{(n-2)\pi }{2}+x \right)
So simplifying in simple manner, we get,
dndxn((x2)sinx)=x2sin(nπ2+x)+2nxsin((n1)π2+x)+n(n1)sin((n2)π2+x)\dfrac{{{d}^{n}}}{d{{x}^{n}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{n\pi }{2}+x \right)+2nx\sin \left( \dfrac{(n-1)\pi }{2}+x \right)+n(n-1)\sin \left( \dfrac{(n-2)\pi }{2}+x \right)
In question it is mention d25ydx25\dfrac{{{d}^{25}}y}{d{{x}^{25}}} that means we have to find it for n=25n=25 ,
Here n=25n=25 so substituting nn as 2525 ,

& \dfrac{{{d}^{25}}}{d{{x}^{25}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{25\pi }{2}+x \right)+50x\sin \left( \dfrac{(25-1)\pi }{2}+x \right)+25(25-1)\sin \left( \dfrac{(25-2)\pi }{2}+x \right) \\\ & \dfrac{{{d}^{25}}}{d{{x}^{25}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{25\pi }{2}+x \right)+50x\sin \left( \dfrac{24\pi }{2}+x \right)+600\sin \left( \dfrac{23\pi }{2}+x \right) \\\ \end{aligned}$$ Hence we get the answer as, $\dfrac{{{d}^{25}}}{d{{x}^{25}}}(({{x}^{2}})\sin x)={{x}^{2}}\sin \left( \dfrac{25\pi }{2}+x \right)+50x\sin \left( \dfrac{24\pi }{2}+x \right)+600\sin \left( \dfrac{23\pi }{2}+x \right)$ So again simplifying the answer we get, $\sin \left( \dfrac{25\pi }{2}+x \right)=\cos x,\sin \left( \dfrac{24\pi }{2}+x \right)=\sin x,\sin \left( \dfrac{23\pi }{2}+x \right)=-\cos x$ So the final answer becomes, $\dfrac{{{d}^{25}}}{d{{x}^{25}}}(({{x}^{2}})\sin x)={{x}^{2}}\cos x+50x\sin x-600\cos x$ Note: Be careful while solving the Leibnitz theorem. While solving confusion occurs. Use the differentiation in the correct manner. Take care of the signs. Also take care while substituting $u$ and $v$. Don’t make mistakes while differentiating $u$ and $v$ . Be clear with the conversion of $\sin $ to $\cos $ such as ${{v}_{1}}=\cos x=\sin \left( \dfrac{\pi }{2}+x \right)$ See here how it is done. Don’t confuse yourself.