Solveeit Logo

Question

Question: Find the value of \(\dfrac{{{d}^{24}}y}{d{{x}^{24}}}\), If \(y={{e}^{x}}({{x}^{2}}-1)\) ....

Find the value of d24ydx24\dfrac{{{d}^{24}}y}{d{{x}^{24}}}, If y=ex(x21)y={{e}^{x}}({{x}^{2}}-1) .

Explanation

Solution

Hint: The differentiation to be found can be found using the Leibnitz rule for differentiation. The Leibnitz rule for finding successive differentiation can be stated as the derivative of nth{{n}^{th}} order is given by the following rule:
If y=u.vy=u.v then dndxn(u.v)=uvn+nc1u1vn1+nc2u2vn2+.......+ncrurvnr+....+unv\frac{{{d}^{n}}}{d{{x}^{n}}}(u.v)=u{{v}_{n}}+{}^{n}{{c}_{1}}{{u}_{1}}{{v}_{n-1}}+{}^{n}{{c}_{2}}{{u}_{2}}{{v}_{n-2}}+.......+{}^{n}{{c}_{r}}{{u}_{r}}{{v}_{n-r}}+....+{{u}_{n}}{{v}_{{}}}.

Complete step-by-step solution -
Here we have to find d24ydx24\dfrac{{{d}^{24}}y}{d{{x}^{24}}}.
The product rule is a formula used to find the derivatives of products of two or more functions. It may be stated as,
(f.g)=f.g+f.g{{(f.g)}^{'}}={{f}^{'}}.g+f.{{g}^{'}}
or in Leibnitz's notation,
d(u.v)dx=dudx.v+u.dvdx\dfrac{d(u.v)}{dx}=\dfrac{du}{dx}.v+u.\dfrac{dv}{dx}
In different notation it can be written as,
d(uv)=udv+vdud(uv)=udv+vdu
The product rule can be considered a special case of the chain rule for several variables.
So the chain rule is,
d(ab)dx=(ab)adadx+(ab)bdbdx\dfrac{d(ab)}{dx}=\dfrac{\partial (ab)}{\partial a}\dfrac{da}{dx}+\dfrac{\partial (ab)}{\partial b}\dfrac{db}{dx}
So we have to use the Leibnitz theorem,
{\displaystyle {\dfrac {d}{dx}}(u\cdot v)={\dfrac {du}{dx}}\cdot v+u\cdot {\dfrac {dv}{dx}}.}So Leibnitz Theorem provides a useful formula for computing the nth{{n}^{th}} derivative of a product of two functions. This theorem (Leibnitz theorem) is also called a theorem for successive differentiation.
This theorem is used for finding the nth{{n}^{th}} derivative of a product. The Leibnitz formula expresses the derivative on nth{{n}^{th}} order of the product of two functions.
If y=u.vy=u.v then dndxn(u.v)=uvn+nc1u1vn1+nc2u2vn2+.......+ncrurvnr+....+unv\dfrac{{{d}^{n}}}{d{{x}^{n}}}(u.v)=u{{v}_{n}}+{}^{n}{{c}_{1}}{{u}_{1}}{{v}_{n-1}}+{}^{n}{{c}_{2}}{{u}_{2}}{{v}_{n-2}}+.......+{}^{n}{{c}_{r}}{{u}_{r}}{{v}_{n-r}}+....+{{u}_{n}}{{v}_{{}}} ……(1)
Now Let us consider u=x21u={{x}^{2}}-1 and v=exv={{e}^{x}} ,
So now we have to differentiate,
Here now differentiatinguufor first derivative u1{{u}_{1}} ,then second derivative u2{{u}_{2}} and then third derivative u3{{u}_{3}} .
So we get the derivatives as,
So u1=2x{{u}_{1}}=2x , u2=2{{u}_{2}}=2 , u3=0{{u}_{3}}=0 …..(2)
Also differentiating for vv , For first , second, nth{{n}^{th}} derivatives and (n1)th{{(n-1)}^{th}} derivatives,
So we get the derivatives as,
v1=ex{{v}_{1}}={{e}^{x}} , v2=ex{{v}_{2}}={{e}^{x}} , v3=ex{{v}_{3}}={{e}^{x}} So vn=ex{{v}_{n}}={{e}^{x}} ………(3)
As we have find out the values of u1,u2,u3{{u}_{1}},{{u}_{2}},{{u}_{3}} and vn,vn1,vn2{{v}_{n}},{{v}_{n-1}},{{v}_{n-2}} ,
Now we have to substitute (2) and (3) in (1) that is substituting in Leibnitz theorem,
So after substituting we get the equation as,
dndxn((x21)ex)=(x21)ex+nc12xex+nc22ex\dfrac{{{d}^{n}}}{d{{x}^{n}}}(({{x}^{2}}-1){{e}^{x}})=({{x}^{2}}-1){{e}^{x}}+{}^{n}{{c}_{1}}2x{{e}^{x}}+{}^{n}{{c}_{2}}2{{e}^{x}}
dndxn((x21)ex)=(x21)ex+n2xex+n(n1)22ex\dfrac{{{d}^{n}}}{d{{x}^{n}}}(({{x}^{2}}-1){{e}^{x}})=({{x}^{2}}-1){{e}^{x}}+n2x{{e}^{x}}+\dfrac{n(n-1)}{2}2{{e}^{x}} ………………(we know nc1=n{}^{n}{{c}_{1}}=n and nc2=n(n1)2{}^{n}{{c}_{2}}=\dfrac{n(n-1)}{2})
So simplifying in simple manner we get,
dndxn((x21)ex)=(x21)ex+2nxex+n(n1)ex\dfrac{{{d}^{n}}}{d{{x}^{n}}}(({{x}^{2}}-1){{e}^{x}})=({{x}^{2}}-1){{e}^{x}}+2nx{{e}^{x}}+n(n-1){{e}^{x}}
Now substituting n=24n=24 , as it is given in question,
So substituting n=24n=24 we get the following,
d24dx24((x21)ex)=(x21)ex+48xex+24(241)ex d24dx24((x21)ex)=(x21)ex+48xex+24(23)ex d24dx24((x21)ex)=(x21)ex+48xex+552ex d24dx24((x21)ex)=ex((x21)+48x+552)  \begin{aligned} & \dfrac{{{d}^{24}}}{d{{x}^{24}}}(({{x}^{2}}-1){{e}^{x}})=({{x}^{2}}-1){{e}^{x}}+48x{{e}^{x}}+24(24-1){{e}^{x}} \\\ & \dfrac{{{d}^{24}}}{d{{x}^{24}}}(({{x}^{2}}-1){{e}^{x}})=({{x}^{2}}-1){{e}^{x}}+48x{{e}^{x}}+24(23){{e}^{x}} \\\ & \dfrac{{{d}^{24}}}{d{{x}^{24}}}(({{x}^{2}}-1){{e}^{x}})=({{x}^{2}}-1){{e}^{x}}+48x{{e}^{x}}+552{{e}^{x}} \\\ & \dfrac{{{d}^{24}}}{d{{x}^{24}}}(({{x}^{2}}-1){{e}^{x}})={{e}^{x}}(({{x}^{2}}-1)+48x+552) \\\ & \\\ \end{aligned}
So we get final answer as,
Hence d24dx24(x21)ex=ex((x21)+48x+552)\dfrac{{{d}^{24}}}{d{{x}^{24}}}({{x}^{2}}-1){{e}^{x}}={{e}^{x}}(({{x}^{2}}-1)+48x+552)

Note: Be careful while solving the Leibnitz theorem not a single value should be missed. Be careful while substituting the value of nn . Also take care while substituting uu and vv . Don’t make mistakes while differentiating uu and vv . Be thorough with nc1=n{}^{n}{{c}_{1}}=n and more. Don’t jumble yourself while simplifying.