Solveeit Logo

Question

Question: Find the value of \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}\], if \[y=(1+{{x}^{2}}){{\tan }^{-1}}x\]....

Find the value of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}, if y=(1+x2)tan1xy=(1+{{x}^{2}}){{\tan }^{-1}}x.

Explanation

Solution

Hint: Directly differentiate with respect to ‘x’ and remember the formula ddx(tan1x)=11+x2\dfrac{d}{dx}({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}.

Complete step-by-step answer:
The given expression is,
y=(1+x2)tan1xy=(1+{{x}^{2}}){{\tan }^{-1}}x
Now we will find the first order derivative of the given expression, so we will differentiate the given expression with respect to x'x', we get
\Rightarrow ddx(y)=ddx[(1+x2)tan1x]\dfrac{d}{dx}\left( y \right)=\dfrac{d}{dx}\left[ (1+{{x}^{2}}){{\tan }^{-1}}x \right]
We know the product rule as, ddx(uv)=uddxv+vddxu\dfrac{d}{dx}\left( u\cdot v\right) = u\dfrac{d}{dx}v+v\dfrac{d}{dx}u, applying this formula in the above equation, we get
\Rightarrow dydx=(1+x2)ddx[tan1x]+tan1xddx[(1+x2)]\dfrac{dy}{dx}=(1+{{x}^{2}})\dfrac{d}{dx}\left[ {{\tan }^{-1}}x \right]+{{\tan }^{-1}}x\dfrac{d}{dx}\left[ (1+{{x}^{2}}) \right]
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., ddx(u+v)=dx(u)+dx(v)\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v), applying this formula in the above equation, we get
\Rightarrow dydx=(1+x2)ddx[tan1x]+tan1x[ddx(1)+ddx[x2]]\dfrac{dy}{dx}=(1+{{x}^{2}})\dfrac{d}{dx}\left[ {{\tan }^{-1}}x \right]+{{\tan }^{-1}}x\left[\dfrac{d}{dx}(1)+\dfrac{d}{dx}\left[ {{x}^{2}} \right] \right]
Now we know the formula, ddx(tan1x)=11+x2\dfrac{d}{dx}({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}, applying this formula, the above equation becomes,
\Rightarrow dydx=(1+x2)1(1+x2)+tan1x[ddx(1)+ddx[x2]]\dfrac{dy}{dx}=(1+{{x}^{2}})\cdot \dfrac{1}{(1+{{x}^{2}})}+{{\tan }^{-1}}x\left[ \dfrac{d}{dx}(1)+\dfrac{d}{dx}\left[ {{x}^{2}} \right] \right]
Now we know ddx(xn)=nxn1\dfrac{d}{dx}({{x}^{n}})=n{{x}^{n-1}} and derivative of a constant is always zero, applying this formula, the above equation becomes,
\Rightarrow dydx=2xtan1x+(1+x2)1(1+x2)\dfrac{dy}{dx}=2x\cdot {{\tan }^{-1}}x+(1+{{x}^{2}})\cdot \dfrac{1}{(1+{{x}^{2}})}
Cancelling the like terms, we get
dydx=2xtan1x+1...........(i)\Rightarrow \dfrac{dy}{dx}=2x\cdot {{\tan }^{-1}}x+1...........(i)
Now we will find the second order derivative. For that we will again differentiate the above
equation with respect to x'x', we get
\Rightarrow ddx(dydx)=ddx(2xtan1x+1)\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( 2x\cdot {{\tan }^{-1}}x+1\right)
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., ddx(u+v)=dx(u)+dx(v)\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v), applying this formula in the above equation, we get
\Rightarrow d2ydx2=ddx(2xtan1x)+ddx(1)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x\cdot {{\tan }^{-1}}x \right)+\dfrac{d}{dx}\left( 1 \right)
Derivative of constant term is zero, so
\Rightarrow d2ydx2=ddx(2xtan1x)+0\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2x\cdot {{\tan }^{-1}}x \right)+0
We know the product rule as, ddx(uv)=uddxv+vddxu\dfrac{d}{dx}\left( u\cdot v\right) = u\dfrac{d}{dx}v+v\dfrac{d}{dx}u, applying this formula in the above equation, we get
\Rightarrow d2ydx2=2xddx(tan1x)+tan1xddx(2x)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2x\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)+{{\tan }^{-1}}x\dfrac{d}{dx}(2x)
Now we know the formula, ddx(tan1x)=11+x2\dfrac{d}{dx}({{\tan }^{-1}}x)=\dfrac{1}{1+{{x}^{2}}}, applying this formula, the above equation becomes,
\Rightarrow d2ydx2=2tan1x+2x11+x2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2{{\tan }^{-1}}x+2x\cdot\dfrac{1}{1+{{x}^{2}}}
Taking the LCM, we get
\Rightarrow d2ydx2=2(1+x2)tan1x+2x1+x2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2(1+{{x}^{2}}){{\tan }^{-1}}x+2x}{1+{{x}^{2}}}
But from the given expression we have, y=(1+x2)tan1xy=(1+{{x}^{2}}){{\tan }^{-1}}x, substituting this value, the above equation becomes,
\Rightarrow d2ydx2=2(y+x)1+x2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{2\left( y+x \right)}{1+{{x}^{2}}}
This is the required answer.

Note: In differentiation questions we should carefully observe the question ask for differentiation with respect to which variable, sometimes its with respect to xx and sometimes it is with respect to y'y' . As in both cases we will get different answers.