Question
Question: Find the value of \(\dfrac{{\cos {{30}^o}\tan {{60}^o} + \sin {{60}^o}\cos {{60}^o}}}{{\cos ec{{30}^...
Find the value of cosec30osec60o−cosec60ocot30ocos30otan60o+sin60ocos60o
Solution
In this particular question use the direct values of standard angles which is given as cos30o=23,cos60o=21, tan60o=3, tan30o=31, sin60o=23, and sin30o=21, and also use the concept that cosec x = (1/sin x), sec x = (1/cos x), cot x = (1/cot x) so use these properties to reach the solution of the question.
Complete step-by-step answer:
Given trigonometric equation
cosec30osec60o−cosec60ocot30ocos30otan60o+sin60ocos60o
So we have to find out the value of the above equation.
As we all know that cosec x = (1/sin x), sec x = (1/cos x), cot x = (1/cot x) so use these properties in the above equation we have,
⇒sin30o1cos60o1−sin60o1tan30o1cos30otan60o+sin60ocos60o
Now use the standard values of standard angles which is given as,
cos30o=23,cos60o=21, tan60o=3, tan30o=31, sin60o=23, and sin30o=21 so substitute these values in the above equation we have,
⇒211211−23131123(3)+23(21)
Now simplify the above equation we have,
⇒(2)(2)−(32)(3)23(3)+23(21)
⇒4−223+43=246+3=86+3
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the all the standard values of standard angles which are all stated above, these values is the key to the solution so directly substitute these values in the given equation after converting the given equation in terms of sine, cosine and tan as above we will get the required answer.