Question
Question: Find the value of \(\dfrac{{4\left( {\cos {{75}^0} + i\sin {{75}^0}} \right)}}{{0.4\left( {\cos {{30...
Find the value of 0.4(cos300+isin300)4(cos750+isin750)
Solution
Hint-In this question, we use the concept of trigonometric identities and also use the basic property of complex numbers. We use cos(A−B)=cosAcosB+sinAsinB and sin(A−B)=sinAcosB−cosAsinB .In this question we also use i2=−1 .
Complete step-by-step answer:
Given, 0.4(cos300+isin300)4(cos750+isin750)
We can write, 4(cos300+isin300)10×4(cos750+isin750)
Now, first we cancel 4 from the numerator and denominator.
⇒(cos300+isin300)10(cos750+isin750)
Multiply cos300−isin300 in numerator and denominator.
⇒(cos300+isin300)(cos300−isin300)10(cos750+isin750)(cos300−isin300)
Now, in denominator we use the algebraic identity (a+b)(a−b)=a2−b2
As we know, i2=−1
⇒cos2300+sin230010(cos750+isin750)(cos300−isin300)
We use trigonometric identity, cos2θ+sin2θ=1
Now, we use trigonometric identity cos(A−B)=cosAcosB+sinAsinB and sin(A−B)=sinAcosB−cosAsinB .
⇒10[cos(750−300)+isin(750−300)] ⇒10(cos450+isin450)As we know, cos450=sin450=21
⇒10(21+i21) ⇒210(1+i) ⇒52(1+i)So, the value of 0.4(cos300+isin300)4(cos750+isin750) is 52(1+i)
Note-In such types of problems we can use two different methods. First method we already mention in above and in second method, we use the Euler’s formula eiθ=cosθ+isinθ to solve questions in an easy way. First we convert trigonometric terms into Euler’s form and solve them. Then we get a specific angle and express Euler’s form into a trigonometric term.
0.4(cos300+isin300)4(cos750+isin750)⇒ei30010ei750⇒10ei450
Now, express Euler’s form into a trigonometric term.
⇒10(cos450+isin450) ⇒10(21+i21) ⇒210(1+i) ⇒52(1+i)