Solveeit Logo

Question

Question: Find the value of \(\dfrac{{4\left( {\cos {{75}^0} + i\sin {{75}^0}} \right)}}{{0.4\left( {\cos {{30...

Find the value of 4(cos750+isin750)0.4(cos300+isin300)\dfrac{{4\left( {\cos {{75}^0} + i\sin {{75}^0}} \right)}}{{0.4\left( {\cos {{30}^0} + i\sin {{30}^0}} \right)}}

Explanation

Solution

Hint-In this question, we use the concept of trigonometric identities and also use the basic property of complex numbers. We use cos(AB)=cosAcosB+sinAsinB\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B and sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B .In this question we also use i2=1{i^2} = - 1 .

Complete step-by-step answer:
Given, 4(cos750+isin750)0.4(cos300+isin300)\dfrac{{4\left( {\cos {{75}^0} + i\sin {{75}^0}} \right)}}{{0.4\left( {\cos {{30}^0} + i\sin {{30}^0}} \right)}}
We can write, 10×4(cos750+isin750)4(cos300+isin300)\dfrac{{10 \times 4\left( {\cos {{75}^0} + i\sin {{75}^0}} \right)}}{{4\left( {\cos {{30}^0} + i\sin {{30}^0}} \right)}}
Now, first we cancel 4 from the numerator and denominator.
10(cos750+isin750)(cos300+isin300)\Rightarrow \dfrac{{10\left( {\cos {{75}^0} + i\sin {{75}^0}} \right)}}{{\left( {\cos {{30}^0} + i\sin {{30}^0}} \right)}}
Multiply cos300isin300\cos {30^0} - i\sin {30^0} in numerator and denominator.
10(cos750+isin750)(cos300isin300)(cos300+isin300)(cos300isin300)\Rightarrow \dfrac{{10\left( {\cos {{75}^0} + i\sin {{75}^0}} \right)\left( {\cos {{30}^0} - i\sin {{30}^0}} \right)}}{{\left( {\cos {{30}^0} + i\sin {{30}^0}} \right)\left( {\cos {{30}^0} - i\sin {{30}^0}} \right)}}
Now, in denominator we use the algebraic identity (a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}

10(cos750+isin750)(cos300isin300)(cos300)2(isin300)2 10(cos750+isin750)(cos300isin300)cos2300i2sin2300   \Rightarrow \dfrac{{10\left( {\cos {{75}^0} + i\sin {{75}^0}} \right)\left( {\cos {{30}^0} - i\sin {{30}^0}} \right)}}{{{{\left( {\cos {{30}^0}} \right)}^2} - {{\left( {i\sin {{30}^0}} \right)}^2}}} \\\ \Rightarrow \dfrac{{10\left( {\cos {{75}^0} + i\sin {{75}^0}} \right)\left( {\cos {{30}^0} - i\sin {{30}^0}} \right)}}{{{{\cos }^2}{{30}^0} - {i^2}{{\sin }^2}{{30}^0}}} \\\ \\\

As we know, i2=1{i^2} = - 1
10(cos750+isin750)(cos300isin300)cos2300+sin2300\Rightarrow \dfrac{{10\left( {\cos {{75}^0} + i\sin {{75}^0}} \right)\left( {\cos {{30}^0} - i\sin {{30}^0}} \right)}}{{{{\cos }^2}{{30}^0} + {{\sin }^2}{{30}^0}}}
We use trigonometric identity, cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1

10(cos750+isin750)(cos300isin300)1 10[(cos750cos300+sin750sin300)+i(sin750cos300cos750sin300)]  \Rightarrow \dfrac{{10\left( {\cos {{75}^0} + i\sin {{75}^0}} \right)\left( {\cos {{30}^0} - i\sin {{30}^0}} \right)}}{1} \\\ \Rightarrow 10\left[ {\left( {\cos {{75}^0}\cos {{30}^0} + \sin {{75}^0}\sin {{30}^0}} \right) + i\left( {\sin {{75}^0}\cos {{30}^0} - \cos {{75}^0}\sin {{30}^0}} \right)} \right] \\\

Now, we use trigonometric identity cos(AB)=cosAcosB+sinAsinB\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B and sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B .

10[cos(750300)+isin(750300)] 10(cos450+isin450)  \Rightarrow 10\left[ {\cos \left( {{{75}^0} - {{30}^0}} \right) + i\sin \left( {{{75}^0} - {{30}^0}} \right)} \right] \\\ \Rightarrow 10\left( {\cos {{45}^0} + i\sin {{45}^0}} \right) \\\

As we know, cos450=sin450=12\cos {45^0} = \sin {45^0} = \dfrac{1}{{\sqrt 2 }}

10(12+i12) 102(1+i) 52(1+i)  \Rightarrow 10\left( {\dfrac{1}{{\sqrt 2 }} + i\dfrac{1}{{\sqrt 2 }}} \right) \\\ \Rightarrow \dfrac{{10}}{{\sqrt 2 }}\left( {1 + i} \right) \\\ \Rightarrow 5\sqrt 2 \left( {1 + i} \right) \\\

So, the value of 4(cos750+isin750)0.4(cos300+isin300)\dfrac{{4\left( {\cos {{75}^0} + i\sin {{75}^0}} \right)}}{{0.4\left( {\cos {{30}^0} + i\sin {{30}^0}} \right)}} is 52(1+i)5\sqrt 2 \left( {1 + i} \right)

Note-In such types of problems we can use two different methods. First method we already mention in above and in second method, we use the Euler’s formula eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta to solve questions in an easy way. First we convert trigonometric terms into Euler’s form and solve them. Then we get a specific angle and express Euler’s form into a trigonometric term.
4(cos750+isin750)0.4(cos300+isin300)10ei750ei30010ei450\dfrac{{4\left( {\cos {{75}^0} + i\sin {{75}^0}} \right)}}{{0.4\left( {\cos {{30}^0} + i\sin {{30}^0}} \right)}} \Rightarrow \dfrac{{10{e^{i{{75}^0}}}}}{{{e^{i{{30}^0}}}}} \Rightarrow 10{e^{i{{45}^0}}}
Now, express Euler’s form into a trigonometric term.
10(cos450+isin450) 10(12+i12) 102(1+i) 52(1+i)  \Rightarrow 10\left( {\cos {{45}^0} + i\sin {{45}^0}} \right) \\\ \Rightarrow 10\left( {\dfrac{1}{{\sqrt 2 }} + i\dfrac{1}{{\sqrt 2 }}} \right) \\\ \Rightarrow \dfrac{{10}}{{\sqrt 2 }}\left( {1 + i} \right) \\\ \Rightarrow 5\sqrt 2 \left( {1 + i} \right) \\\