Solveeit Logo

Question

Question: Find the value of derivatives \(\dfrac{{{d}^{2}}x}{d{{t}^{2}}},\dfrac{{{d}^{2}}y}{d{{t}^{2}}},\dfrac...

Find the value of derivatives d2xdt2,d2ydt2,d2ydx2\dfrac{{{d}^{2}}x}{d{{t}^{2}}},\dfrac{{{d}^{2}}y}{d{{t}^{2}}},\dfrac{{{d}^{2}}y}{d{{x}^{2}}} from the given the parametric equations x=a(cost+tsint)x=a\left( \cos t+t\sin t \right) and y=a(sinttcost)y=a\left( \sin t-t\cos t \right) where the domain of tt is given as 0<t<π2 0< t <\dfrac{\pi }{2}.

Explanation

Solution

The given pair equations are in parameterized form where both dependent and independent variables are expressed in terms of a parameter tt. Determine the parametric derivative of xx with respect to tt and derivative of yy with respect to tt. Differentiate second time to determine the values of d2xdt2 and d2ydt2\dfrac{{{d}^{2}}x}{d{{t}^{2}}}\text{ and }\dfrac{{{d}^{2}}y}{d{{t}^{2}}}. Use the values of dxdt and dydt\dfrac{dx}{dt}\text{ and }\dfrac{dy}{dt} obtained during calculation to determine the value of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.

Complete step by step answer:
The first given parametric equation is x=a(cost+tsint)x=a\left( \cos t+t\sin t \right). If $f\left( x \right)\text{ and }g\left( x \right)$ are two differentiable functions then by product rule $$\dfrac{d}{dx}\left( f\left( x \right)g\left( x \right) \right)=g\left( x \right)\dfrac{d}{dx}f\left( x \right)+f\left( x \right)\dfrac{d}{dx}g\left( x \right)$$ Differentiating both side with respect to $t$ using product rule if needed, $\begin{aligned} & x=a\left( \cos t+t\sin t \right) \\\ & \Rightarrow \dfrac{dx}{dt}=a\dfrac{d}{dt}\left( \cos t+t\sin t \right) \\\ & \Rightarrow \dfrac{dx}{dt}=a\left( -\sin t+t\cos t+\sin t \right)=at\cos t....(1) \\\ \end{aligned}$
Differentiating again with respect to tt both side
d2xdt2=ddt(atcost)=a(tsint+cost)\dfrac{{{d}^{2}}x}{d{{t}^{2}}}=\dfrac{d}{dt}\left( at\cos t \right)=a\left( -t\sin t+\cos t \right)
The second given parametric equation isy=a(sinttcost)y=a\left( \sin t-t\cos t \right).$$$$
Differentiating both side with respect to tt using product rule if needed,

& y=a\left( \sin t-t\cos t \right) \\\ & \Rightarrow \dfrac{dy}{dt}=a\dfrac{d}{dt}\left( \sin t-t\cos t \right) \\\ & \Rightarrow \dfrac{dy}{dt}=a\left( \cos t-\cos t+t\sin t \right) \\\ & \Rightarrow \dfrac{dy}{dt}=at\sin t....(2) \\\ \end{aligned}$$ Differentiating again with respect to $t$ both side $$\dfrac{{{d}^{2}}y}{d{{t}^{2}}}=\dfrac{d}{dt}\left( at\sin t \right)=a\left( \sin t+t\cos t \right)$$ We know that in case of parameterized equations the domain of the parameter is same as the domain of the dependent variable. Here the domains of $x\text{ and }y$ are same as the domain of $t$, that means $0< x,y,t <\dfrac{\pi }{2}$. Hence we can express $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ in terms of $\dfrac{dx}{dt}\text{ and }\dfrac{dy}{dt}$. $$\dfrac{dy}{dx}=\dfrac{dy}{dt}\cdot \dfrac{dt}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}\text{ }$$ Now we shall substitute the values $\dfrac{dx}{dt}\text{ and }\dfrac{dy}{dt}$ obtained from (1) and (2). $$\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{at\sin t}{at\cos t}=\tan t$$ Differentiating again with respect to $t$, $$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \tan t \right)=\dfrac{d}{dt}\left( \tan t \right)\cdot \dfrac{dt}{dx}=\dfrac{{{\sec }^{2}}t}{\dfrac{dx}{dt}}$$ Again substituting $\dfrac{dx}{dt}\text{ }$above, $$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{\sec }^{2}}t}{\dfrac{dx}{dt}}=\dfrac{{{\sec }^{2}}t}{at\cos t}=\dfrac{{{\sec }^{2}}t}{at\dfrac{1}{\sec t}}=\dfrac{{{\sec }^{3}}t}{at}$$ **Therefore the obtained values are $$\dfrac{{{d}^{2}}x}{d{{t}^{2}}}=a\left( -t\sin t+\cos t \right),\dfrac{{{d}^{2}}y}{d{{t}^{2}}}=a\left( \sin t+t\cos t \right)$$ and $$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{\sec }^{3}}t}{at}$$** **Note:** The question tests your concept of parametric equations. Parametric equations are used when an equation cannot be expressed either in implicit or explicit form. The domains of $x,y$and $t$ are the same. That is exactly why we can express $\dfrac{dy}{dx}$ in terms of $\dfrac{dy}{dt}$ and $\dfrac{dx}{dt}$.