Solveeit Logo

Question

Question: Find the value of definite integration \(\int\limits_0^{\dfrac{\pi }{2}} {\sin x\cos xdx} \) ....

Find the value of definite integration 0π2sinxcosxdx\int\limits_0^{\dfrac{\pi }{2}} {\sin x\cos xdx} .

Explanation

Solution

Hint-In this question, we use the concept of definite integration and also use basic trigonometric identity. We use trigonometric identity sin2x=2sinxcosx\sin 2x = 2\sin x\cos x and we also use absinnθ=[cosnθn]ab\int\limits_a^b {\sin n\theta = \left[ {\dfrac{{ - \cos n\theta }}{n}} \right]_a^b} .

Complete step-by-step answer:
Let I=0π2sinxcosxdxI = \int\limits_0^{\dfrac{\pi }{2}} {\sin x\cos xdx}
Now, multiply by 2 on both sides of the equation.
2I=0π22sinxcosxdx\Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {2\sin x\cos xdx}
We use trigonometric identity sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
2I=0π2sin2xdx\Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{2}} {\sin 2xdx}
As we know integration absinnθ=[cosnθn]ab\int\limits_a^b {\sin n\theta = \left[ {\dfrac{{ - \cos n\theta }}{n}} \right]_a^b}
2I=[cos2x2]0π2 2I=12[cos2x]0π2  \Rightarrow 2I = \left[ {\dfrac{{ - \cos 2x}}{2}} \right]_0^{\dfrac{\pi }{2}} \\\ \Rightarrow 2I = \dfrac{{ - 1}}{2}\left[ {\cos 2x} \right]_0^{\dfrac{\pi }{2}} \\\
2I=12[cos2×π2cos2×0] 2I=12[cosπcos0]  \Rightarrow 2I = \dfrac{{ - 1}}{2}\left[ {\cos 2 \times \dfrac{\pi }{2} - \cos 2 \times 0} \right] \\\ \Rightarrow 2I = \dfrac{{ - 1}}{2}\left[ {\cos \pi - \cos 0} \right] \\\
We know the value of cosπ=1 and cos0=1\cos \pi = - 1{\text{ and }}\cos 0 = 1
2I=12[11] 2I=12×(2) I=12  \Rightarrow 2I = \dfrac{{ - 1}}{2}\left[ { - 1 - 1} \right] \\\ \Rightarrow 2I = \dfrac{{ - 1}}{2} \times \left( { - 2} \right) \\\ \Rightarrow I = \dfrac{1}{2} \\\
So the value of integration 0π2sinxcosxdx\int\limits_0^{\dfrac{\pi }{2}} {\sin x\cos xdx} is 12\dfrac{1}{2} .
Note-In such types of questions we use some important points to solve problems in an easy way. First we convert the big expression into a small expression by using trigonometric identity as mentioned in above and then apply integration because we know the integration of standard trigonometric form (like integration of sinx is cosx). Then after putting the limit we will get the required answer.