Solveeit Logo

Question

Question: Find the value of \(\csc \left( {\dfrac{{11\pi }}{6}} \right)\)....

Find the value of csc(11π6)\csc \left( {\dfrac{{11\pi }}{6}} \right).

Explanation

Solution

We know thatcscx=1sinx\csc x = \dfrac{1}{{\sin x}}. So first we need to find sin(11π6)\sin \left( {\dfrac{{11\pi }}{6}} \right)and then find its reciprocal.
We also know  cos2θ=12sin2θ\;\cos 2\theta = 1 - 2{\sin ^2}\theta , this is one of the basic trigonometric identities.
In order to solve this question we can use the above mentioned identity. For that we have to convert our question in such a way that it can be expressed in the form of the above given identity.

Complete step by step solution:
Given
csc(11π6)...................................(i)\csc \left( {\dfrac{{11\pi }}{6}} \right)...................................\left( i \right)
Now we also knowcscx=1sinx\csc x = \dfrac{1}{{\sin x}}. So to find the value of csc(11π6)\csc \left( {\dfrac{{11\pi }}{6}} \right)we need to find sin(11π6)\sin \left( {\dfrac{{11\pi }}{6}} \right)and then find it’s reciprocal.
Now to find sin(11π6)\sin \left( {\dfrac{{11\pi }}{6}} \right)we can use the identity  cos2θ=12sin2θ\;\cos 2\theta = 1 - 2{\sin ^2}\theta .
Finding the value ofsin(11π6)\sin \left( {\dfrac{{11\pi }}{6}} \right):
Now let’s assume sin(11π6)=sina......................(ii)\sin \left( {\dfrac{{11\pi }}{6}} \right) = \sin a......................\left( {ii} \right)
So similarly we can write   cosa=cos(11π6)\;\cos a = \cos \left( {\dfrac{{11\pi }}{6}} \right)
cos2a=cos(22π6)\Rightarrow \cos 2a = \cos \left( {\dfrac{{22\pi }}{6}} \right)
We have to find the value of cos(22π6)\cos \left( {\dfrac{{22\pi }}{6}} \right)such that by using the identity we can then solve the question.
So finding the value ofcos(22π6)\cos \left( {\dfrac{{22\pi }}{6}} \right):
We know that cos(22π6)\cos \left( {\dfrac{{22\pi }}{6}} \right)can be written as
cos(12(2π)62π6)=cos(2(2π)2π6).................(iii)   \cos \left( {\dfrac{{12\left( {2\pi } \right)}}{6} - \dfrac{{2\pi }}{6}} \right) = \cos \left( {2\left( {2\pi } \right) - \dfrac{{2\pi }}{6}} \right).................(iii) \\\ \\\
So from (iii) we know that cos(2(2π)2π6)\cos \left( {2\left( {2\pi } \right) - \dfrac{{2\pi }}{6}} \right)would be in
the IV Quadrant where cosine is positive.
Such that:

\right)..................(iv)$$ Also we know $$\cos \left( {\dfrac{{2\pi }}{6}} \right) = \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}....................(v)$$ Now by using the identity $\;\cos 2\theta = 1 - 2{\sin ^2}\theta $we get $ \Rightarrow \cos 2a = 1 - 2{\sin ^2}a = \dfrac{1}{2} \\\ \Rightarrow 2{\sin ^2}a = 1 - \dfrac{1}{2} = \dfrac{1}{2} \\\ \Rightarrow {\sin ^2}a = \dfrac{1}{4} \\\ $ Now from (ii) $$\sin \left( {\dfrac{{11\pi }}{6}} \right) = \sin a$$ $ \Rightarrow \sin {\left( {\dfrac{{11\pi }}{6}} \right)^2} = \dfrac{1}{4} \\\ \Rightarrow \sin \left( {\dfrac{{11\pi }}{6}} \right) = - \dfrac{1}{2} \\\ $ Now we know that$\csc x = \dfrac{1}{{\sin x}}$, such that: $\csc \left( {\dfrac{{11\pi }}{6}} \right) = \dfrac{1}{{\sin \left( {\dfrac{{11\pi }}{6}} \right)}} = \dfrac{1}{{\left( { - \dfrac{1}{2}} \right)}} = - 2$ **Therefore the value of$\csc \left( {\dfrac{{11\pi }}{6}} \right)\;{\text{is}}\; - 2$.** **Note:** General things to be known for solving this question. I Quadrant:$0\; - \;\dfrac{\pi }{2}$ All values are positive. II Quadrant:$\dfrac{\pi }{2}\; - \;\pi $ Only Sine and Cosec values are positive. III Quadrant:$\pi \; - \;\dfrac{{3\pi }}{2}$ Only Tan and Cot values are positive. IV Quadrant:$\dfrac{{3\pi }}{2}\; - \;2\pi $ Only Cos and Sec values are positive. Some other equations needed for solving these types of problem are:

\sin \left( {2\theta } \right) = 2\sin \left( \theta \right)\cos \left( \theta \right) \\
\cos \left( {2\theta } \right) = {\cos ^2}\left( \theta \right)-{\sin ^2}\left( \theta \right) = 1-2{\text{
}}{\sin ^2}\left( \theta \right) = 2{\text{ }}{\cos ^2}\left( \theta \right)-1 \\

Alsowhileapproachingatrigonometricproblemoneshouldkeepinmindthatoneshouldworkwithonesideatatimeandmanipulateittotheotherside.Themoststraightforwardwaytodothisistosimplifyonesidetotheotherdirectly. Also while approaching a trigonometric problem one should keep in mind that one should work with one side at a time and manipulate it to the other side. The most straightforward way to do this is to simplify one side to the other directly.