QuestionReportMathematics Question on Inverse Trigonometric FunctionsFind the value of cot(tan−1a+cot−1a)\cot(tan^{-1}a+\cot^{-1}a)cot(tan−1a+cot−1a)Answercot(tan−1a+cot−1a)\cot(tan^{-1}a+\cot^{-1}a)cot(tan−1a+cot−1a) = cotπ2 [tan−1x+cot−1x=π2]\cot\frac{\pi}{2}\;[\tan^{-1}x+\cot^{-1}x=\frac{\pi}{2}]cot2π[tan−1x+cot−1x=2π] =0