Question
Question: Find the value of \(\cot \left( { - \dfrac{{15\pi }}{4}} \right)\)...
Find the value of cot(−415π)
Solution
Note that, cot(−x)=−cotx
Again, we know that the function y= cotx has a period ofπ or 180∘., i.e. the value of cotx repeats after an interval of πor 180°.
Therefore write 415π as 4π−4π and proceed.
Complete step-by-step answer:
We know that the function y= cotx has a period of π or 180∘., i.e. the value of cotx repeats after an interval of π or 180∘..
Therefore,
cot(−415π)
Since, cot(−x)=−cotx,
=−cot(415π)
On expanding the numerator we get,
=−cot(416π−π)
On simplification we get,
=−cot(4π−4π)
Since, (415π) lies in the fourth quadrant, therefore cot(415π) will be negative
=−(−cot3π)
=cot3π
As, cot3π=31
=31
Therefore the value of cot(−415π)is 31.
Note: Note the following important formulae:
1.cosx=secx1 , sinx=cosecx1 , tanx=cotx1
2.sin2x+cos2x=1
3.sec2x−tan2x=1
4.cosec2x−cot2x=1
5.sin(−x)=−sinx
6.cos(−x)=cosx
7.tan(−x)=−tanx
8.sin(2nπ±x)=sinx , period 2π or 360∘
9.cos(2nπ±x)=cosx , period 2π or 360∘
10.tan(nπ±x)=tanx , period π or 180∘
Sign convention:
Also, the trigonometric ratios of the standard angles are given by
| 0∘| 30∘| 45∘| 60∘| 90∘
---|---|---|---|---|---
Sinx| 0| 21 | 21 | 23 | 1
Cosx| 1| 23| 21| 21| 0
Tanx| 0| 31 | 1| 3| Undefined
Cotx| undefined| 3| 1| 31| 0
cosecx| undefined| 2| 2| 32| 1
Secx| 1| 32| 2| 2| Undefined