Solveeit Logo

Question

Question: Find the value of \({{\cot }^{-1}}\left( \dfrac{\sqrt{1-\sin x}-\sqrt{1+\sin x}}{\sqrt{1-\sin x}+\sq...

Find the value of cot1(1sinx1+sinx1sinx+1+sinx)=...(0<x<π2){{\cot }^{-1}}\left( \dfrac{\sqrt{1-\sin x}-\sqrt{1+\sin x}}{\sqrt{1-\sin x}+\sqrt{1+\sin x}} \right)=...\left( 0 < x < \dfrac{\pi }{2} \right).
A)x2 B)π22x C)2πx D)πx2 \begin{aligned} & \left. A \right)\dfrac{x}{2} \\\ & \left. B \right)\dfrac{\pi }{2}-2x \\\ & \left. C \right)2\pi -x \\\ & \left. D \right)\pi -\dfrac{x}{2} \\\ \end{aligned}

Explanation

Solution

In this question, we have to find the value of given trigonometric function. Thus, we will use the trigonometric formulas and the identities to get the solution. First, we will use the trigonometric identity sin2x2+cos2x2=1{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}=1 and trigonometric formula sinx=2sinx2cosx2\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2} in the given question. After that, we will use the algebraic identity (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab and (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab such that a=sinx2a=\sin \dfrac{x}{2} and b=cosx2b=\cos \dfrac{x}{2} . Then, we will divide sinx2\sin \dfrac{x}{2} in both the numerator and the denominator. In the last, we will apply the cot function formula, that is cot(a+b)=cot(a)cot(b)1cota+cotb\cot \left( a+b \right)=\dfrac{\cot \left( a \right)\cot \left( b \right)-1}{\cot a+\cot b} . In the last, we will use the formula cot1(cotx)=x{{\cot }^{-1}}\left( \cot x \right)=x, to get the required solution.

Complete step by step solution:
According to the problem, we have to find the value of given trigonometric function.
Thus, we will use the trigonometric formulas and the identities to get the solution.
The trigonometric function given to us is cot1(1sinx1+sinx1sinx+1+sinx){{\cot }^{-1}}\left( \dfrac{\sqrt{1-\sin x}-\sqrt{1+\sin x}}{\sqrt{1-\sin x}+\sqrt{1+\sin x}} \right) --------- (1)
Now, we will first use the trigonometric identity sin2x2+cos2x2=1{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}=1 and trigonometric formula sinx=2sinx2cosx2\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2} in equation (1), we get
cot1(sin2x2+cos2x22sinx2cosx2sin2x2+cos2x2+2sinx2cosx2sin2x2+cos2x22sinx2cosx2+sin2x2+cos2x2+2sinx2cosx2)\Rightarrow {{\cot }^{-1}}\left( \dfrac{\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}-\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}+\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}} \right)
Now, we will apply the algebraic identity (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab and (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab such that a=sinx2a=\sin \dfrac{x}{2} and b=cosx2b=\cos \dfrac{x}{2} in the above equation, we get
cot1((sinx2cosx2)2(sinx2+cosx2)2(sinx2cosx2)2+(sinx2+cosx2)2)\Rightarrow {{\cot }^{-1}}\left( \dfrac{\sqrt{{{\left( \sin \dfrac{x}{2}-\cos \dfrac{x}{2} \right)}^{2}}}-\sqrt{{{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}}}{\sqrt{{{\left( \sin \dfrac{x}{2}-\cos \dfrac{x}{2} \right)}^{2}}}+\sqrt{{{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}}} \right)
Now, we will solve the above expression more, we get
cot1(sinx2cosx2sinx2cosx2sinx2cosx2+(sinx2+cosx2))\Rightarrow {{\cot }^{-1}}\left( \dfrac{\sin \dfrac{x}{2}-\cos \dfrac{x}{2}-\sin \dfrac{x}{2}-\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}-\cos \dfrac{x}{2}+\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)} \right)
As we know, the same terms with opposite signs cancel out each, we get
cot1(cosx2cosx2sinx2+sinx2)\Rightarrow {{\cot }^{-1}}\left( \dfrac{-\cos \dfrac{x}{2}-\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}+\sin \dfrac{x}{2}} \right)
cot1(2cosx22sinx2)\Rightarrow {{\cot }^{-1}}\left( \dfrac{-2\cos \dfrac{x}{2}}{2\sin \dfrac{x}{2}} \right)
cot1(cosx2sinx2)\Rightarrow {{\cot }^{-1}}\left( \dfrac{-\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}} \right)
Now, we will apply the trigonometric formula cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x} in the above expression, we get
cot1(cotx2)\Rightarrow {{\cot }^{-1}}\left( -\cot \dfrac{x}{2} \right)
Now, we know that cot is an odd function, thus we will apply the formula cotx=cot(x)-\cot x=\cot \left( -x \right) in the above expression, we get
cot1(cot(x2))\Rightarrow {{\cot }^{-1}}\left( \cot \left( -\dfrac{x}{2} \right) \right)
Now, we know that x must lie between 0 and π2\dfrac{\pi }{2} , therefore it is the first quadrant where all the functions are positive, hence we rewrite cot(x)=cot(πx)\cot \left( -x \right)=\cot \left( \pi -x \right) , we get
cot1(cot(πx2))\Rightarrow {{\cot }^{-1}}\left( \cot \left( \pi -\dfrac{x}{2} \right) \right)
Now, we will apply the inverse-trigonometric formula cot1(cotx)=x{{\cot }^{-1}}\left( \cot x \right)=x in the above expression, we get
πx2\Rightarrow \pi -\dfrac{x}{2}
Therefore, for cot1(1sinx1+sinx1sinx+1+sinx)=...(0<x<π2){{\cot }^{-1}}\left( \dfrac{\sqrt{1-\sin x}-\sqrt{1+\sin x}}{\sqrt{1-\sin x}+\sqrt{1+\sin x}} \right)=...\left( 0 < x < \dfrac{\pi }{2} \right) , it is equal to πx2\pi -\dfrac{x}{2}

So, the correct answer is “Option D”.

Note: While solving this problem, do mention all the steps properly to avoid error and confusion. Do mention all the formulas properly and do not forget to change the negative angle to positive angle, to get an accurate solution.