Solveeit Logo

Question

Question: Find the value of \(\cosh \left( ix \right)\). (a) \(\cos \left( x \right)\) (b) \(i\times \cos ...

Find the value of cosh(ix)\cosh \left( ix \right).
(a) cos(x)\cos \left( x \right)
(b) i×cos(x)i\times \cos \left( x \right)
(c) cos(x)-\cos \left( x \right)
(d) i×cos(x)i\times \cos \left( x \right)

Explanation

Solution

Consider ii as the imaginary number 1\sqrt{-1} and use the formula for the exponential form of the hyperbolic function cosh(x)\cosh \left( x \right) given as cosh(x)=ex+ex2\cosh \left( x \right)=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}. Substitute ixix in place of x to get the expression for cosh(ix)\cosh \left( ix \right). Now, use the Euler’s formulas in complex number given as eix=cosx+isinx{{e}^{ix}}=\cos x+i\sin x and substitute –x in place of x to find the value of eix{{e}^{-ix}}. Simplify the obtained expression to get the answer.

Complete step by step answer:
Here we have been provided with the hyperbolic function cosh(ix)\cosh \left( ix \right) and we are asked to find its simplified form. Let us use the exponential form of the hyperbolic function and some properties of the complex numbers to get the answer.
Now, here ii is the imaginary number 1\sqrt{-1}, so using the formula for the hyperbolic function cosh(x)\cosh \left( x \right) given as cosh(x)=ex+ex2\cosh \left( x \right)=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2} in exponential form we get on replacing x with ixix,
cosh(ix)=eix+eix2\Rightarrow \cosh \left( ix \right)=\dfrac{{{e}^{ix}}+{{e}^{-ix}}}{2}
Now, in complex numbers we have Euler’s formula relating the exponential function having complex exponential and trigonometric functions (sine and cosine function) given as eix=cosx+isinx{{e}^{ix}}=\cos x+i\sin x, so using this formulas and also replacing x with –x to get the value of eix{{e}^{-ix}} we get,
cosh(ix)=[cos(x)+isin(x)]+[cos(x)+isin(x)]2\Rightarrow \cosh \left( ix \right)=\dfrac{\left[ \cos \left( x \right)+i\sin \left( x \right) \right]+\left[ \cos \left( -x \right)+i\sin \left( -x \right) \right]}{2}
Using the properties cos(x)=cosx\cos \left( -x \right)=\cos x and sin(x)=sinx\sin \left( -x \right)=-\sin x we get,
cosh(ix)=cos(x)+isin(x)+cos(x)isin(x)2\Rightarrow \cosh \left( ix \right)=\dfrac{\cos \left( x \right)+i\sin \left( x \right)+\cos \left( x \right)-i\sin \left( x \right)}{2}
Cancelling the like terms and simplifying we get,
cosh(ix)=2cos(x)2 cosh(ix)=cos(x) \begin{aligned} & \Rightarrow \cosh \left( ix \right)=\dfrac{2\cos \left( x \right)}{2} \\\ & \therefore \cosh \left( ix \right)=\cos \left( x \right) \\\ \end{aligned}

So, the correct answer is “Option a”.

Note: Note that you must not consider ii as any variable otherwise you will not be able to use the Euler’s formula to simplify the expression. Always remember that ii is the solution of the quadratic equation x2+1=0{{x}^{2}}+1=0 and it is an imaginary number. You must remember the above used trigonometric identities so that you can cancel the like terms wherever possible.