Solveeit Logo

Question

Question: Find the value of $\cos\frac{2\pi}{13}+\cos\frac{6\pi}{13}+\cos\frac{8\pi}{13}$...

Find the value of cos2π13+cos6π13+cos8π13\cos\frac{2\pi}{13}+\cos\frac{6\pi}{13}+\cos\frac{8\pi}{13}

A

1314\frac{\sqrt{13}-1}{4}

Answer

1314\frac{\sqrt{13}-1}{4}

Explanation

Solution

The problem asks for the value of the sum cos2π13+cos6π13+cos8π13\cos\frac{2\pi}{13}+\cos\frac{6\pi}{13}+\cos\frac{8\pi}{13}.

Let θ=2π13\theta = \frac{2\pi}{13}. The sum can be written as S=cosθ+cos3θ+cos4θS = \cos\theta + \cos3\theta + \cos4\theta.

We know that for a prime nn, the sum of the nn-th roots of unity is zero. 1+ei2πn+ei4πn++ei2(n1)πn=01 + e^{i\frac{2\pi}{n}} + e^{i\frac{4\pi}{n}} + \dots + e^{i\frac{2(n-1)\pi}{n}} = 0. Taking the real part, we get: 1+cos2πn+cos4πn++cos2(n1)πn=01 + \cos\frac{2\pi}{n} + \cos\frac{4\pi}{n} + \dots + \cos\frac{2(n-1)\pi}{n} = 0. For n=13n=13: 1+k=112cos2kπ13=01 + \sum_{k=1}^{12} \cos\frac{2k\pi}{13} = 0. So, k=112cos2kπ13=1\sum_{k=1}^{12} \cos\frac{2k\pi}{13} = -1.

Notice the symmetry property of cosine: cos(2πx)=cosx\cos(2\pi - x) = \cos x. cos2kπ13=cos(2π2kπ13)=cos((262k)π13)=cos(2(13k)π13)\cos\frac{2k\pi}{13} = \cos\left(2\pi - \frac{2k\pi}{13}\right) = \cos\left(\frac{(26-2k)\pi}{13}\right) = \cos\left(\frac{2(13-k)\pi}{13}\right). This means: cos2π13=cos24π13\cos\frac{2\pi}{13} = \cos\frac{24\pi}{13} cos4π13=cos22π13\cos\frac{4\pi}{13} = \cos\frac{22\pi}{13} cos6π13=cos20π13\cos\frac{6\pi}{13} = \cos\frac{20\pi}{13} cos8π13=cos18π13\cos\frac{8\pi}{13} = \cos\frac{18\pi}{13} cos10π13=cos16π13\cos\frac{10\pi}{13} = \cos\frac{16\pi}{13} cos12π13=cos14π13\cos\frac{12\pi}{13} = \cos\frac{14\pi}{13}

Using this symmetry, we can rewrite the sum k=112cos2kπ13\sum_{k=1}^{12} \cos\frac{2k\pi}{13}: 2(cos2π13+cos4π13+cos6π13+cos8π13+cos10π13+cos12π13)=12\left(\cos\frac{2\pi}{13}+\cos\frac{4\pi}{13}+\cos\frac{6\pi}{13}+\cos\frac{8\pi}{13}+\cos\frac{10\pi}{13}+\cos\frac{12\pi}{13}\right) = -1. Let C=cos2π13+cos4π13+cos6π13+cos8π13+cos10π13+cos12π13C = \cos\frac{2\pi}{13}+\cos\frac{4\pi}{13}+\cos\frac{6\pi}{13}+\cos\frac{8\pi}{13}+\cos\frac{10\pi}{13}+\cos\frac{12\pi}{13}. So, C=12C = -\frac{1}{2}.

Let the given sum be S1=cos2π13+cos6π13+cos8π13S_1 = \cos\frac{2\pi}{13}+\cos\frac{6\pi}{13}+\cos\frac{8\pi}{13}. Let the remaining terms in CC be S2=cos4π13+cos10π13+cos12π13S_2 = \cos\frac{4\pi}{13}+\cos\frac{10\pi}{13}+\cos\frac{12\pi}{13}. Then S1+S2=C=12S_1 + S_2 = C = -\frac{1}{2}.

Now, let's analyze S1S_1 and S2S_2 using the property cos(πx)=cosx\cos(\pi - x) = -\cos x: S1=cos2π13+cos6π13+cos8π13S_1 = \cos\frac{2\pi}{13}+\cos\frac{6\pi}{13}+\cos\frac{8\pi}{13}. Notice that 8π13=π5π13\frac{8\pi}{13} = \pi - \frac{5\pi}{13}, so cos8π13=cos5π13\cos\frac{8\pi}{13} = -\cos\frac{5\pi}{13}. S1=cos2π13+cos6π13cos5π13S_1 = \cos\frac{2\pi}{13}+\cos\frac{6\pi}{13}-\cos\frac{5\pi}{13}.

For S2S_2: cos10π13=cos(π3π13)=cos3π13\cos\frac{10\pi}{13} = \cos\left(\pi - \frac{3\pi}{13}\right) = -\cos\frac{3\pi}{13}. cos12π13=cos(ππ13)=cosπ13\cos\frac{12\pi}{13} = \cos\left(\pi - \frac{\pi}{13}\right) = -\cos\frac{\pi}{13}. So, S2=cos4π13cos3π13cosπ13S_2 = \cos\frac{4\pi}{13} - \cos\frac{3\pi}{13} - \cos\frac{\pi}{13}.

This looks like a problem related to Gaussian periods. For a prime pp, the sum of cosines of angles 2kπ/p2k\pi/p where kk are quadratic residues or non-residues modulo pp can be evaluated. For p=13p=13: Quadratic residues modulo 13 are Q={12,22,32,42,52,62}(mod13)={1,4,9,3,12,10}Q = \{1^2, 2^2, 3^2, 4^2, 5^2, 6^2\} \pmod{13} = \{1, 4, 9, 3, 12, 10\}. In increasing order: Q={1,3,4,9,10,12}Q = \{1, 3, 4, 9, 10, 12\}. Quadratic non-residues modulo 13 are N={2,5,6,7,8,11}N = \{2, 5, 6, 7, 8, 11\}.

Consider the sum η0=kQei2kπ/13\eta_0 = \sum_{k \in Q} e^{i2k\pi/13}. Its real part is Re(η0)=kQcos(2kπ/13)\text{Re}(\eta_0) = \sum_{k \in Q} \cos(2k\pi/13). Re(η0)=cos2π13+cos6π13+cos8π13+cos18π13+cos20π13+cos24π13\text{Re}(\eta_0) = \cos\frac{2\pi}{13} + \cos\frac{6\pi}{13} + \cos\frac{8\pi}{13} + \cos\frac{18\pi}{13} + \cos\frac{20\pi}{13} + \cos\frac{24\pi}{13}. Using symmetry cos2kπ13=cos2(13k)π13\cos\frac{2k\pi}{13} = \cos\frac{2(13-k)\pi}{13}: cos18π13=cos2(139)π13=cos8π13\cos\frac{18\pi}{13} = \cos\frac{2(13-9)\pi}{13} = \cos\frac{8\pi}{13}. cos20π13=cos2(1310)π13=cos6π13\cos\frac{20\pi}{13} = \cos\frac{2(13-10)\pi}{13} = \cos\frac{6\pi}{13}. cos24π13=cos2(1312)π13=cos2π13\cos\frac{24\pi}{13} = \cos\frac{2(13-12)\pi}{13} = \cos\frac{2\pi}{13}. So, Re(η0)=2(cos2π13+cos6π13+cos8π13)=2S1\text{Re}(\eta_0) = 2\left(\cos\frac{2\pi}{13} + \cos\frac{6\pi}{13} + \cos\frac{8\pi}{13}\right) = 2S_1.

Consider the sum η1=kNei2kπ/13\eta_1 = \sum_{k \in N} e^{i2k\pi/13}. Its real part is Re(η1)=kNcos(2kπ/13)\text{Re}(\eta_1) = \sum_{k \in N} \cos(2k\pi/13). Re(η1)=cos4π13+cos10π13+cos12π13+cos14π13+cos16π13+cos22π13\text{Re}(\eta_1) = \cos\frac{4\pi}{13} + \cos\frac{10\pi}{13} + \cos\frac{12\pi}{13} + \cos\frac{14\pi}{13} + \cos\frac{16\pi}{13} + \cos\frac{22\pi}{13}. Using symmetry: cos14π13=cos12π13\cos\frac{14\pi}{13} = \cos\frac{12\pi}{13}. cos16π13=cos10π13\cos\frac{16\pi}{13} = \cos\frac{10\pi}{13}. cos22π13=cos4π13\cos\frac{22\pi}{13} = \cos\frac{4\pi}{13}. So, Re(η1)=2(cos4π13+cos10π13+cos12π13)=2S2\text{Re}(\eta_1) = 2\left(\cos\frac{4\pi}{13} + \cos\frac{10\pi}{13} + \cos\frac{12\pi}{13}\right) = 2S_2.

We know that 1+k=112cos2kπ13=01 + \sum_{k=1}^{12} \cos\frac{2k\pi}{13} = 0, which implies 1+Re(η0)+Re(η1)=01 + \text{Re}(\eta_0) + \text{Re}(\eta_1) = 0. So, 1+2S1+2S2=01 + 2S_1 + 2S_2 = 0, which means 2(S1+S2)=12(S_1+S_2) = -1, or S1+S2=1/2S_1+S_2 = -1/2. This matches our earlier result.

For a prime p1(mod4)p \equiv 1 \pmod 4, the Gaussian periods are given by: 2Re(η0)=1+p2\text{Re}(\eta_0) = -1 + \sqrt{p} 2Re(η1)=1p2\text{Re}(\eta_1) = -1 - \sqrt{p} Since 131(mod4)13 \equiv 1 \pmod 4, we can use these formulas. We are looking for S1S_1. We found that 2S1=Re(η0)2S_1 = \text{Re}(\eta_0). So, 2S1=1+1322S_1 = \frac{-1 + \sqrt{13}}{2}. Therefore, S1=1+134S_1 = \frac{-1 + \sqrt{13}}{4}.

The final answer is 1314\boxed{\frac{\sqrt{13}-1}{4}}.

Explanation of the solution:

  1. Utilize Sum of Roots of Unity: The sum of the nn-th roots of unity is zero. For z131=0z^{13}-1=0, the roots are ei2kπ13e^{i\frac{2k\pi}{13}} for k=0,1,,12k=0, 1, \dots, 12. The sum of these roots is zero. Taking the real part, we get 1+k=112cos2kπ13=01 + \sum_{k=1}^{12} \cos\frac{2k\pi}{13} = 0, which implies k=112cos2kπ13=1\sum_{k=1}^{12} \cos\frac{2k\pi}{13} = -1.
  2. Exploit Cosine Symmetry: Use the property cos(2πx)=cosx\cos(2\pi - x) = \cos x to show that cos2kπ13=cos2(13k)π13\cos\frac{2k\pi}{13} = \cos\frac{2(13-k)\pi}{13}. This means the terms in the sum repeat, allowing us to write 2(cos2π13+cos4π13+cos6π13+cos8π13+cos10π13+cos12π13)=12\left(\cos\frac{2\pi}{13}+\cos\frac{4\pi}{13}+\cos\frac{6\pi}{13}+\cos\frac{8\pi}{13}+\cos\frac{10\pi}{13}+\cos\frac{12\pi}{13}\right) = -1. Let CP=cos2π13+cos4π13+cos6π13+cos8π13+cos10π13+cos12π13C_P = \cos\frac{2\pi}{13}+\cos\frac{4\pi}{13}+\cos\frac{6\pi}{13}+\cos\frac{8\pi}{13}+\cos\frac{10\pi}{13}+\cos\frac{12\pi}{13}. So CP=1/2C_P = -1/2.
  3. Connect to Gaussian Periods: The given sum cos2π13+cos6π13+cos8π13\cos\frac{2\pi}{13}+\cos\frac{6\pi}{13}+\cos\frac{8\pi}{13} corresponds to the terms whose indices kk are quadratic residues modulo 13 (i.e., 1,3,41, 3, 4). The quadratic residues modulo 13 are Q={1,3,4,9,10,12}Q = \{1, 3, 4, 9, 10, 12\}. The sum of cosines for these indices is kQcos2kπ13=cos2π13+cos6π13+cos8π13+cos18π13+cos20π13+cos24π13\sum_{k \in Q} \cos\frac{2k\pi}{13} = \cos\frac{2\pi}{13}+\cos\frac{6\pi}{13}+\cos\frac{8\pi}{13}+\cos\frac{18\pi}{13}+\cos\frac{20\pi}{13}+\cos\frac{24\pi}{13}. Using symmetry again, this sum is 2(cos2π13+cos6π13+cos8π13)2(\cos\frac{2\pi}{13}+\cos\frac{6\pi}{13}+\cos\frac{8\pi}{13}), which is 2S12S_1. This sum is the real part of the Gaussian period η0=kQei2kπ/13\eta_0 = \sum_{k \in Q} e^{i2k\pi/13}.
  4. Apply Formula for Gaussian Periods: For a prime p1(mod4)p \equiv 1 \pmod 4, the real part of the Gaussian period η0\eta_0 is given by Re(η0)=1+p2\text{Re}(\eta_0) = \frac{-1 + \sqrt{p}}{2}. Since 131(mod4)13 \equiv 1 \pmod 4, we have Re(η0)=1+132\text{Re}(\eta_0) = \frac{-1 + \sqrt{13}}{2}. As 2S1=Re(η0)2S_1 = \text{Re}(\eta_0), we have 2S1=1+1322S_1 = \frac{-1 + \sqrt{13}}{2}. Therefore, S1=1+134S_1 = \frac{-1 + \sqrt{13}}{4}.

Answer:

The value of cos2π13+cos6π13+cos8π13\cos\frac{2\pi}{13}+\cos\frac{6\pi}{13}+\cos\frac{8\pi}{13} is 1314\frac{\sqrt{13}-1}{4}.