Solveeit Logo

Question

Question: Find the value of \[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \\{ \left( {n - 1} \right)...

Find the value of cosθ+cos2θ+cos3θ+..+cos(n1)θ+cosnθ\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \\{ \left( {n - 1} \right)\theta \\} + \cos n\theta
a. sin(θ2)\sin \left( {\dfrac{\theta }{2}} \right)
b. cos(n+1)θsin(θ2)\dfrac{{\cos \left( {n + 1} \right)\theta }}{{\sin \left( {\dfrac{\theta }{2}} \right)}}
c. cos(θ+(n1)θ2)sin(nθ2)sin(θ2)\dfrac{{\cos \left( {\theta + \dfrac{{\left( {n - 1} \right)\theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}
d. sin(nθ2).cos(n+1)θ\sin \left( {\dfrac{{n\theta }}{2}} \right).\cos \\{ \left( {n + 1} \right)\theta \\}

Explanation

Solution

First, we shall analyze the given information so that we are able to solve this problem. Here, we are givencosθ+cos2θ+cos3θ+..+cos(n1)θ+cosnθ\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \\{ \left( {n - 1} \right)\theta \\} + \cos n\theta and we are asked to calculate the value ofcosθ+cos2θ+cos3θ+..+cos(n1)θ+cosnθ\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \\{ \left( {n - 1} \right)\theta \\} + \cos n\theta .
We need to considercosθ+cos2θ+cos3θ+..+cos(n1)θ+cosnθ\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \\{ \left( {n - 1} \right)\theta \\} + \cos n\theta this in terms of summation.
That is, cosθ+cos2θ+cos3θ+..+cos(n1)θ+cosnθ=k=1ncos(kθ)\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \\{ \left( {n - 1} \right)\theta \\} + \cos n\theta = \sum\limits_{k = 1}^n {cos(k\theta )}
Since we all knoweiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta , we need to substitute it in the obtained equation.

Formula to be used:
a) The formula to calculate the sum of the geometric series is as follows.
1+x+x2+....+xn=xn+11x11 + x + {x^2} + .... + {x^n} = \dfrac{{{x^{n + 1}} - 1}}{{x - 1}} wherex1x \geqslant 1
b) sinθ=eiθeiθ2i\sin \theta = \dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{{2i}}

Complete step by step answer:
We know thateiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta
We are asked to calculatecosθ+cos2θ+cos3θ+..+cos(n1)θ+cosnθ\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \\{ \left( {n - 1} \right)\theta \\} + \cos n\theta
Thus, cosθ+cos2θ+cos3θ+..+cos(n1)θ+cosnθ\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \\{ \left( {n - 1} \right)\theta \\} + \cos n\theta can be written in terms of summation as follows.
cosθ+cos2θ+cos3θ+..+cos(n1)θ+cosnθ=k=1ncos(kθ)\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \\{ \left( {n - 1} \right)\theta \\} + \cos n\theta = \sum\limits_{k = 1}^n {cos(k\theta )}
k=1ncos(kθ)=Rek=1neikθ\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \sum\limits_{k = 1}^n {{e^{ik\theta }}} (cosθ\cos \theta is the real part ofeiθ{e^{i\theta }})
=Re(eiθ+ei2θ+ei3θ+.....+einθ)= \operatorname{Re} \left( {{e^{i\theta }} + {e^{i2\theta }} + {e^{i3\theta }} + ..... + {e^{in\theta }}} \right) (We have expanded the above expression)
Now, we shall take eiθ{e^{i\theta }}as a common term.
k=1ncos(kθ)=Re(eiθ(1+eiθ+ei2θ+ei3θ+.....+ei(n1)θ))\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\theta }}\left( {1 + {e^{i\theta }} + {e^{i2\theta }} + {e^{i3\theta }} + ..... + {e^{i\left( {n - 1} \right)\theta }}} \right)} \right)
=Re(eiθ(1+eiθ+ei2θ+ei3θ+.....+ei(n1)θ))= \operatorname{Re} \left( {{e^{i\theta }}\left( {1 + {e^{i\theta }} + {e^{i2\theta }} + {e^{i3\theta }} + ..... + {e^{i\left( {n - 1} \right)\theta }}} \right)} \right)
Now, using the formula to calculate the sum of the geometric series1+x+x2+....+xn=xn+11x11 + x + {x^2} + .... + {x^n} = \dfrac{{{x^{n + 1}} - 1}}{{x - 1}}, we get
k=1ncos(kθ)=Re(eiθ(einθ1eiθ1))\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\theta }}\left( {\dfrac{{{e^{in\theta }} - 1}}{{{e^{i\theta }} - 1}}} \right)} \right)
Here, we shall applyeiθ=eiθ2.eiθ2{e^{i\theta }} = {e^{\dfrac{{i\theta }}{2}}}.{e^{\dfrac{{i\theta }}{2}}} ,einθ=einθ2.einθ2{e^{in\theta }} = {e^{\dfrac{{in\theta }}{2}}}.{e^{\dfrac{{in\theta }}{2}}} and1=einθ2.einθ21 = {e^{\dfrac{{in\theta }}{2}}}.{e^{\dfrac{{ - in\theta }}{2}}} in the above equation.
k=1ncos(kθ)=Re(eiθ(einθ2.einθ2einθ2.einθ2eiθ2.eiθ2eiθ2.eiθ2))\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\theta }}\left( {\dfrac{{{e^{\dfrac{{in\theta }}{2}}}.{e^{\dfrac{{in\theta }}{2}}} - {e^{\dfrac{{in\theta }}{2}}}.{e^{\dfrac{{ - in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}}.{e^{\dfrac{{i\theta }}{2}}} - {e^{\dfrac{{i\theta }}{2}}}.{e^{\dfrac{{ - i\theta }}{2}}}}}} \right)} \right)
Now, we shall pick the common terms inside the brackets.
k=1ncos(kθ)=Re(eiθeinθ2eiθ2(einθ2einθ2eiθ2eiθ2))\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\theta }}\dfrac{{{e^{\dfrac{{in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}}}}\left( {\dfrac{{{e^{\dfrac{{in\theta }}{2}}} - {e^{\dfrac{{ - in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}} - {e^{\dfrac{{ - i\theta }}{2}}}}}} \right)} \right) ……………..(1)\left( 1 \right)
Here, eiθeinθ2eiθ2=eiθeinθ2eiθ2{e^{i\theta }}\dfrac{{{e^{\dfrac{{in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}}}} = {e^{i\theta }}{e^{\dfrac{{in\theta }}{2}}}{e^{\dfrac{{ - i\theta }}{2}}}
=eiθ+inθ2iθ2= {e^{i\theta + \dfrac{{in\theta }}{2}\dfrac{{ - i\theta }}{2}}}
=ei(θ+nθ2θ2)= {e^{i\left( {\theta + \dfrac{{n\theta }}{2}\dfrac{{ - \theta }}{2}} \right)}}
=ei(2θ+nθθ2)= {e^{i\left( {\dfrac{{2\theta + n\theta - \theta }}{2}} \right)}}
=eiθ(n+12)= {e^{i\theta \left( {\dfrac{{n + 1}}{2}} \right)}}
We need to substitute eiθeinθ2eiθ2=ei(n+1)θ2{e^{i\theta }}\dfrac{{{e^{\dfrac{{in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}}}} = {e^{i\left( {n + 1} \right)\dfrac{\theta }{2}}} in the equation(1)\left( 1 \right).
k=1ncos(kθ)=Re(ei(n+1)θ2(einθ2einθ2eiθ2eiθ2))\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\left( {n + 1} \right)\dfrac{\theta }{2}}}\left( {\dfrac{{{e^{\dfrac{{in\theta }}{2}}} - {e^{\dfrac{{ - in\theta }}{2}}}}}{{{e^{\dfrac{{i\theta }}{2}}} - {e^{\dfrac{{ - i\theta }}{2}}}}}} \right)} \right) ……….(2)\left( 2 \right)
Using the formulasinθ=eiθeiθ2i\sin \theta = \dfrac{{{e^{i\theta }} - {e^{ - i\theta }}}}{{2i}}, we haveeiθeiθ=2isinθ{e^{i\theta }} - {e^{ - i\theta }} = 2i\sin \theta
Similarly, einθ2einθ2=2isinnθ2{e^{\dfrac{{in\theta }}{2}}} - {e^{\dfrac{{ - in\theta }}{2}}} = 2i\sin \dfrac{{n\theta }}{2} andeiθ2eiθ2=2isinθ2{e^{\dfrac{{i\theta }}{2}}} - {e^{\dfrac{{ - i\theta }}{2}}} = 2i\sin \dfrac{\theta }{2} .
We shall substitute the above results in the equation(2)\left( 2 \right)
k=1ncos(kθ)=Re(ei(n+1)θ2(2isinnθ22isinθ2))\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {{e^{i\left( {n + 1} \right)\dfrac{\theta }{2}}}\left( {\dfrac{{2i\sin \dfrac{{n\theta }}{2}}}{{2i\sin \dfrac{\theta }{2}}}} \right)} \right)
Sinceeiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta we have
k=1ncos(kθ)=Re(cos((n+1)θ2)+sin(i(n+1)θ2)(sinnθ2sinθ2))\sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {\cos \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right) + \sin \left( {i\left( {n + 1} \right)\dfrac{\theta }{2}} \right)\left( {\dfrac{{\sin \dfrac{{n\theta }}{2}}}{{\sin \dfrac{\theta }{2}}}} \right)} \right)
k=1ncos(kθ)=Re(cos((n+1)θ2)+isin((n+1)θ2)(sinnθ2sinθ2))\Rightarrow \sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {\cos \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right) + i\sin \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right)\left( {\dfrac{{\sin \dfrac{{n\theta }}{2}}}{{\sin \dfrac{\theta }{2}}}} \right)} \right)
k=1ncos(kθ)=Re(cos((n+1)θ2)(sinnθ2sinθ2)+isin((n+1)θ2)(sinnθ2sinθ2))\Rightarrow \sum\limits_{k = 1}^n {cos(k\theta )} = \operatorname{Re} \left( {\cos \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right)\left( {\dfrac{{\sin \dfrac{{n\theta }}{2}}}{{\sin \dfrac{\theta }{2}}}} \right) + i\sin \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right)\left( {\dfrac{{\sin \dfrac{{n\theta }}{2}}}{{\sin \dfrac{\theta }{2}}}} \right)} \right)
Now, we need to consider the real part alone.
k=1ncos(kθ)=cos((n+1)θ2)(sinnθ2sinθ2)\Rightarrow \sum\limits_{k = 1}^n {cos(k\theta )} = \cos \left( {\left( {n + 1} \right)\dfrac{\theta }{2}} \right)\left( {\dfrac{{\sin \dfrac{{n\theta }}{2}}}{{\sin \dfrac{\theta }{2}}}} \right)
=cos(nθ+θ2)sin(nθ2)sin(θ2)= \dfrac{{\cos \left( {\dfrac{{n\theta + \theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}
=cos(2θ+nθθ2)sin(nθ2)sin(θ2)= \dfrac{{\cos \left( {\dfrac{{2\theta + n\theta - \theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}
=cos(2θ2+nθθ2)sin(nθ2)sin(θ2)= \dfrac{{\cos \left( {\dfrac{{2\theta }}{2} + \dfrac{{n\theta - \theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}
=cos(θ+(n1)θ2)sin(nθ2)sin(θ2)= \dfrac{{\cos \left( {\theta + \dfrac{{\left( {n - 1} \right)\theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}
Therefore, cosθ+cos2θ+cos3θ+..+cos{(n1)θ}+cosnθ\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta =cos(θ+(n1)θ2)sin(nθ2)sin(θ2) = \dfrac{{\cos \left( {\theta + \dfrac{{\left( {n - 1} \right)\theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}

So, the correct answer is “Option c”.

Note: We know thateiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta . Generally, a complex number consists of a real part and an imaginary part. For example, let us consider a complex numberz=5+7iz = 5 + 7i. In this example, the real part ofzz is55and the imaginary part ofzz is77.
Similarly, foreiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta , the real part ofeiθ{e^{i\theta }} iscosθ\cos \theta and the imaginary part ofeiθ{e^{i\theta }} issinθ\sin \theta
Therefore, cosθ+cos2θ+cos3θ+..+cos{(n1)θ}+cosnθ\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \{ \left( {n - 1} \right)\theta \} + \cos n\theta =cos(θ+(n1)θ2)sin(nθ2)sin(θ2) = \dfrac{{\cos \left( {\theta + \dfrac{{\left( {n - 1} \right)\theta }}{2}} \right)\sin \left( {\dfrac{{n\theta }}{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}}