Question
Question: Find the value of \[\cos \theta + \cos 2\theta + \cos 3\theta + .. + \cos \\{ \left( {n - 1} \right)...
Find the value of cosθ+cos2θ+cos3θ+..+cos(n−1)θ+cosnθ
a. sin(2θ)
b. sin(2θ)cos(n+1)θ
c. sin(2θ)cos(θ+2(n−1)θ)sin(2nθ)
d. sin(2nθ).cos(n+1)θ
Solution
First, we shall analyze the given information so that we are able to solve this problem. Here, we are givencosθ+cos2θ+cos3θ+..+cos(n−1)θ+cosnθand we are asked to calculate the value ofcosθ+cos2θ+cos3θ+..+cos(n−1)θ+cosnθ.
We need to considercosθ+cos2θ+cos3θ+..+cos(n−1)θ+cosnθ this in terms of summation.
That is, cosθ+cos2θ+cos3θ+..+cos(n−1)θ+cosnθ=k=1∑ncos(kθ)
Since we all knoweiθ=cosθ+isinθ, we need to substitute it in the obtained equation.
Formula to be used:
a) The formula to calculate the sum of the geometric series is as follows.
1+x+x2+....+xn=x−1xn+1−1 wherex⩾1
b) sinθ=2ieiθ−e−iθ
Complete step by step answer:
We know thateiθ=cosθ+isinθ
We are asked to calculatecosθ+cos2θ+cos3θ+..+cos(n−1)θ+cosnθ
Thus, cosθ+cos2θ+cos3θ+..+cos(n−1)θ+cosnθcan be written in terms of summation as follows.
cosθ+cos2θ+cos3θ+..+cos(n−1)θ+cosnθ=k=1∑ncos(kθ)
k=1∑ncos(kθ)=Rek=1∑neikθ (cosθis the real part ofeiθ)
=Re(eiθ+ei2θ+ei3θ+.....+einθ) (We have expanded the above expression)
Now, we shall take eiθas a common term.
k=1∑ncos(kθ)=Re(eiθ(1+eiθ+ei2θ+ei3θ+.....+ei(n−1)θ))
=Re(eiθ(1+eiθ+ei2θ+ei3θ+.....+ei(n−1)θ))
Now, using the formula to calculate the sum of the geometric series1+x+x2+....+xn=x−1xn+1−1, we get
k=1∑ncos(kθ)=Re(eiθ(eiθ−1einθ−1))
Here, we shall applyeiθ=e2iθ.e2iθ ,einθ=e2inθ.e2inθ and1=e2inθ.e2−inθ in the above equation.
k=1∑ncos(kθ)=Reeiθe2iθ.e2iθ−e2iθ.e2−iθe2inθ.e2inθ−e2inθ.e2−inθ
Now, we shall pick the common terms inside the brackets.
k=1∑ncos(kθ)=Reeiθe2iθe2inθe2iθ−e2−iθe2inθ−e2−inθ ……………..(1)
Here, eiθe2iθe2inθ=eiθe2inθe2−iθ
=eiθ+2inθ2−iθ
=ei(θ+2nθ2−θ)
=ei(22θ+nθ−θ)
=eiθ(2n+1)
We need to substitute eiθe2iθe2inθ=ei(n+1)2θ in the equation(1).
k=1∑ncos(kθ)=Reei(n+1)2θe2iθ−e2−iθe2inθ−e2−inθ ……….(2)
Using the formulasinθ=2ieiθ−e−iθ, we haveeiθ−e−iθ=2isinθ
Similarly, e2inθ−e2−inθ=2isin2nθ ande2iθ−e2−iθ=2isin2θ .
We shall substitute the above results in the equation(2)
k=1∑ncos(kθ)=Reei(n+1)2θ2isin2θ2isin2nθ
Sinceeiθ=cosθ+isinθwe have
k=1∑ncos(kθ)=Recos((n+1)2θ)+sin(i(n+1)2θ)sin2θsin2nθ
⇒k=1∑ncos(kθ)=Recos((n+1)2θ)+isin((n+1)2θ)sin2θsin2nθ
⇒k=1∑ncos(kθ)=Recos((n+1)2θ)sin2θsin2nθ+isin((n+1)2θ)sin2θsin2nθ
Now, we need to consider the real part alone.
⇒k=1∑ncos(kθ)=cos((n+1)2θ)sin2θsin2nθ
=sin(2θ)cos(2nθ+θ)sin(2nθ)
=sin(2θ)cos(22θ+nθ−θ)sin(2nθ)
=sin(2θ)cos(22θ+2nθ−θ)sin(2nθ)
=sin(2θ)cos(θ+2(n−1)θ)sin(2nθ)
Therefore, cosθ+cos2θ+cos3θ+..+cos{(n−1)θ}+cosnθ=sin(2θ)cos(θ+2(n−1)θ)sin(2nθ)
So, the correct answer is “Option c”.
Note: We know thateiθ=cosθ+isinθ. Generally, a complex number consists of a real part and an imaginary part. For example, let us consider a complex numberz=5+7i. In this example, the real part ofz is5and the imaginary part ofz is7.
Similarly, foreiθ=cosθ+isinθ, the real part ofeiθ iscosθ and the imaginary part ofeiθ issinθ
Therefore, cosθ+cos2θ+cos3θ+..+cos{(n−1)θ}+cosnθ=sin(2θ)cos(θ+2(n−1)θ)sin(2nθ)