Question
Question: Find the value of \[\cos \left( {\dfrac {\pi }{{15}}} \right)\cos \left( {\dfrac {{2\pi }}{{15}}} \r...
Find the value of cos(15π)cos(152π)cos(153π)cos(154π)cos(155π)cos(156π)cos(157π)
Solution
Here we use the formula of 2sinxcosx=sin2x repeatedly to lessen the values in the solution. We multiply and divide the given value with 2sin15π and apply the trigonometric formula. We continue in this manner till we stop getting the corresponding cosine of the angle in the available terms. Then break the remaining angles in terms of subtraction or addition to π and use the quadrant diagram to solve for the value.
- In a quadrant diagram we have trigonometric functions specific to a quadrant where they are positive in nature. We always move in an anticlockwise direction when adding angles.
Complete step-by-step answer:
We are given the equation cos(15π)cos(152π)cos(153π)cos(154π)cos(155π)cos(156π)cos(157π)
First multiply and divide the equation by 2sin(15π)
\Rightarrow \dfrac {{\left\\{ {2\sin \left( {\dfrac {\pi }{{15}}} \right)\cos \left( {\dfrac {\pi }{{15}}} \right)} \right\\}\cos \left( {\dfrac {{2\pi }}{{15}}} \right)\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{4\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)\cos \left( {\dfrac {{7\pi }}{{15}}} \right)}}{{2\sin \left( {\dfrac {\pi }{{15}}} \right)}}
Use the trigonometric formula 2sinxcosx=sin2x. Substitute x=15π
2sin15πcos15π=sin215π
Multiply the value in RHS
2sin15πcos15π=sin152π … (2)
Substitute the value from equation (2) in equation (1)
⇒2sin(15π)sin(152π)cos(152π)cos(153π)cos(154π)cos(155π)cos(156π)cos(157π)
Multiply and divide the equation by 2
\Rightarrow \dfrac {{\left\\{ {2\sin \left( {\dfrac {{2\pi }}{{15}}} \right)\cos \left( {\dfrac {{2\pi }}{{15}}} \right)} \right\\}\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{4\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)\cos \left( {\dfrac {{7\pi }}{{15}}} \right)}}{{2 \times 2\sin \left( {\dfrac {\pi }{{15}}} \right)}} … (3)
Use the trigonometric formula2sinxcosx=sin2x. Substitute x=152π
2sin152πcos152π=sin2152π
Multiply the value in RHS
2sin152πcos152π=sin154π … (4)
Substitute the value from equation (4) in equation (3)
⇒4sin(15π)sin(154π)cos(153π)cos(154π)cos(155π)cos(156π)cos(157π)
Multiply and divide the equation by 2
\Rightarrow \dfrac {{\left\\{ {2\sin \left( {\dfrac {{4\pi }}{{15}}} \right)\cos \left( {\dfrac {{4\pi }}{{15}}} \right)} \right\\}\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)\cos \left( {\dfrac {{7\pi }}{{15}}} \right)}}{{2 \times 4\sin \left( {\dfrac {\pi }{{15}}} \right)}} … (5)
Use the trigonometric formula2sinxcosx=sin2x. Substitute x=154π
2sin154πcos154π=sin2154π
Multiply the value in RHS
2sin154πcos154π=sin158π … (6)
Substitute the value from equation (6) in equation (5)
⇒8sin(15π)sin(158π)cos(153π)cos(155π)cos(156π)cos(157π) … (7)
Now we know cos(157π)=cos(π−158π)
We find the value of cos(157π) from the quadrant diagram.
As we subtract an angle from π, only the function sin remains positive.
Therefore, cos(π−158π)=−cos(158π)
Substitute the value of cos(157π)=−cos(158π) in equation (7)
⇒8sin(15π)−sin(158π)cos(153π)cos(155π)cos(156π)cos(158π)
Multiply and divide the equation by 2
\Rightarrow \dfrac {{ - \left\\{ {2\sin \left( {\dfrac {{8\pi }}{{15}}} \right)\cos \left( {\dfrac {{8\pi }}{{15}}} \right)} \right\\}\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)}}{{2 \times 8\sin \left( {\dfrac {\pi }{{15}}} \right)}} … (8)
Use the trigonometric formula2sinxcosx=sin2x. Substitute x=158π
2sin158πcos158π=sin2158π
Multiply the value in RHS
2sin158πcos158π=sin1516π … (9)
Substitute the value from equation (9) in equation (8)
⇒16sin(15π)−sin(1516π)cos(153π)cos(155π)cos(156π) … (10)
Now we know sin(1516π)=sin(π+15π)
We find the value of sin(1516π) from the quadrant diagram.
As we add an angle to π, only the function tan remains positive.
Therefore, sin(π+15π)=−sin(15π)
Substitute the value of sin(1516π)=−sin(15π) in equation (10)
⇒16sin(15π)−(−sin(15π))cos(153π)cos(155π)cos(156π)
Cancel the same terms from numerator and denominator.
⇒16cos(153π)cos(155π)cos(156π)
⇒16cos(153π)cos(3π)cos(156π)
Substitute the value of cos(3π)=21
⇒16×2cos(153π)cos(156π)
⇒32cos(153π)cos(156π) … (11)
First multiply and divide the equation by 2sin(153π)
\Rightarrow \dfrac {{\left\\{ {2\sin \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{3\pi }}{{15}}} \right)} \right\\}\cos \left( {\dfrac {{6\pi }}{{15}}} \right)}}{{32 \times 2\sin \left( {\dfrac {{3\pi }}{{15}}} \right)}} … (12)
Use the trigonometric formula 2sinxcosx=sin2x. Substitute x=153π
2sin153πcos153π=sin2153π
Multiply the value in RHS
2sin153πcos153π=sin156π … (13)
Substitute the value from equation (13) in equation (12)
⇒64sin(153π)sin(156π)cos(156π)
Multiply and divide the equation by 2
\Rightarrow \dfrac {{\left\\{ {2\sin \left( {\dfrac {{6\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)} \right\\}}}{{2 \times 64\sin \left( {\dfrac {{3\pi }}{{15}}} \right)}} … (14)
Use the trigonometric formula 2sinxcosx=sin2x. Substitute x=156π
2sin156πcos156π=sin2156π
Multiply the value in RHS
2sin156πcos156π=sin1512π … (15)
Substitute the value from equation (15) in equation (14)
⇒128sin(153π)sin(1512π) … (16)
Now we know sin(1512π)=sin(π−153π)
We find the value of sin(1512π)from the quadrant diagram.
As we subtract an angle fromπ, only the function sin remains positive.
Therefore, sin(π−153π)=sin(153π)
Substitute the value of sin(1512π)=sin(153π) in equation (16)
⇒128sin(153π)sin(153π)
Cancel the same terms from numerator and denominator.
⇒1281
Therefore, value of cos(15π)cos(152π)cos(153π)cos(154π)cos(155π)cos(156π)cos(157π) is1281.
Note: Students are likely to get confused while pairing up the values for cos and sin after the value of angle as 158π, keep in mind we break the angle with addition and subtraction to π. Always check the angle from the quadrant diagram as when we add an angle we move in anticlockwise direction and when we subtract an angle we move in clockwise direction.