Solveeit Logo

Question

Question: Find the value of \[\cos \left( {\dfrac {\pi }{{15}}} \right)\cos \left( {\dfrac {{2\pi }}{{15}}} \r...

Find the value of cos(π15)cos(2π15)cos(3π15)cos(4π15)cos(5π15)cos(6π15)cos(7π15)\cos \left( {\dfrac {\pi }{{15}}} \right)\cos \left( {\dfrac {{2\pi }}{{15}}} \right)\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{4\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)\cos \left( {\dfrac {{7\pi }}{{15}}} \right)

Explanation

Solution

Here we use the formula of 2sinxcosx=sin2x2\sin x\cos x = \sin 2x repeatedly to lessen the values in the solution. We multiply and divide the given value with 2sinπ152\sin \dfrac {\pi }{{15}} and apply the trigonometric formula. We continue in this manner till we stop getting the corresponding cosine of the angle in the available terms. Then break the remaining angles in terms of subtraction or addition to π\pi and use the quadrant diagram to solve for the value.

  • In a quadrant diagram we have trigonometric functions specific to a quadrant where they are positive in nature. We always move in an anticlockwise direction when adding angles.

Complete step-by-step answer:
We are given the equation cos(π15)cos(2π15)cos(3π15)cos(4π15)cos(5π15)cos(6π15)cos(7π15)\cos \left( {\dfrac {\pi }{{15}}} \right)\cos \left( {\dfrac {{2\pi }}{{15}}} \right)\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{4\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)\cos \left( {\dfrac {{7\pi }}{{15}}} \right)
First multiply and divide the equation by 2sin(π15)2\sin \left( {\dfrac {\pi }{{15}}} \right)
\Rightarrow \dfrac {{\left\\{ {2\sin \left( {\dfrac {\pi }{{15}}} \right)\cos \left( {\dfrac {\pi }{{15}}} \right)} \right\\}\cos \left( {\dfrac {{2\pi }}{{15}}} \right)\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{4\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)\cos \left( {\dfrac {{7\pi }}{{15}}} \right)}}{{2\sin \left( {\dfrac {\pi }{{15}}} \right)}}
Use the trigonometric formula 2sinxcosx=sin2x2\sin x\cos x = \sin 2x. Substitute x=π15x = \dfrac {\pi }{{15}}
2sinπ15cosπ15=sin2π152\sin \dfrac {\pi }{{15}}\cos \dfrac {\pi }{{15}} = \sin 2\dfrac {\pi }{{15}}
Multiply the value in RHS
2sinπ15cosπ15=sin2π152\sin \dfrac {\pi }{{15}}\cos \dfrac {\pi }{{15}} = \sin \dfrac {{2\pi }}{{15}} … (2)
Substitute the value from equation (2) in equation (1)
sin(2π15)cos(2π15)cos(3π15)cos(4π15)cos(5π15)cos(6π15)cos(7π15)2sin(π15)\Rightarrow \dfrac {{\sin \left( {\dfrac {{2\pi }}{{15}}} \right)\cos \left( {\dfrac {{2\pi }}{{15}}} \right)\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{4\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)\cos \left( {\dfrac {{7\pi }}{{15}}} \right)}}{{2\sin \left( {\dfrac {\pi }{{15}}} \right)}}
Multiply and divide the equation by 2
\Rightarrow \dfrac {{\left\\{ {2\sin \left( {\dfrac {{2\pi }}{{15}}} \right)\cos \left( {\dfrac {{2\pi }}{{15}}} \right)} \right\\}\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{4\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)\cos \left( {\dfrac {{7\pi }}{{15}}} \right)}}{{2 \times 2\sin \left( {\dfrac {\pi }{{15}}} \right)}} … (3)
Use the trigonometric formula2sinxcosx=sin2x2\sin x\cos x = \sin 2x. Substitute x=2π15x = \dfrac {{2\pi }}{{15}}
2sin2π15cos2π15=sin22π152\sin \dfrac {{2\pi }}{{15}}\cos \dfrac {{2\pi }}{{15}} = \sin 2\dfrac {{2\pi }}{{15}}
Multiply the value in RHS
2sin2π15cos2π15=sin4π152\sin \dfrac {{2\pi }}{{15}}\cos \dfrac {{2\pi }}{{15}} = \sin \dfrac {{4\pi }}{{15}} … (4)
Substitute the value from equation (4) in equation (3)
sin(4π15)cos(3π15)cos(4π15)cos(5π15)cos(6π15)cos(7π15)4sin(π15)\Rightarrow \dfrac {{\sin \left( {\dfrac {{4\pi }}{{15}}} \right)\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{4\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)\cos \left( {\dfrac {{7\pi }}{{15}}} \right)}}{{4\sin \left( {\dfrac {\pi }{{15}}} \right)}}
Multiply and divide the equation by 2
\Rightarrow \dfrac {{\left\\{ {2\sin \left( {\dfrac {{4\pi }}{{15}}} \right)\cos \left( {\dfrac {{4\pi }}{{15}}} \right)} \right\\}\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)\cos \left( {\dfrac {{7\pi }}{{15}}} \right)}}{{2 \times 4\sin \left( {\dfrac {\pi }{{15}}} \right)}} … (5)
Use the trigonometric formula2sinxcosx=sin2x2\sin x\cos x = \sin 2x. Substitute x=4π15x = \dfrac {{4\pi }}{{15}}
2sin4π15cos4π15=sin24π152\sin \dfrac {{4\pi }}{{15}}\cos \dfrac {{4\pi }}{{15}} = \sin 2\dfrac {{4\pi }}{{15}}
Multiply the value in RHS
2sin4π15cos4π15=sin8π152\sin \dfrac {{4\pi }}{{15}}\cos \dfrac {{4\pi }}{{15}} = \sin \dfrac {{8\pi }}{{15}} … (6)
Substitute the value from equation (6) in equation (5)
sin(8π15)cos(3π15)cos(5π15)cos(6π15)cos(7π15)8sin(π15)\Rightarrow \dfrac {{\sin \left( {\dfrac {{8\pi }}{{15}}} \right)\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)\cos \left( {\dfrac {{7\pi }}{{15}}} \right)}}{{8\sin \left( {\dfrac {\pi }{{15}}} \right)}} … (7)
Now we know cos(7π15)=cos(π8π15)\cos \left( {\dfrac {{7\pi }}{{15}}} \right) = \cos \left( {\pi - \dfrac {{8\pi }}{{15}}} \right)
We find the value of cos(7π15)\cos \left( {\dfrac {{7\pi }}{{15}}} \right) from the quadrant diagram.

As we subtract an angle from π\pi , only the function sin remains positive.
Therefore, cos(π8π15)=cos(8π15)\cos \left( {\pi - \dfrac {{8\pi }}{{15}}} \right) = - \cos \left( {\dfrac {{8\pi }}{{15}}} \right)
Substitute the value of cos(7π15)=cos(8π15)\cos \left( {\dfrac {{7\pi }}{{15}}} \right) = - \cos \left( {\dfrac {{8\pi }}{{15}}} \right) in equation (7)
sin(8π15)cos(3π15)cos(5π15)cos(6π15)cos(8π15)8sin(π15)\Rightarrow \dfrac {{ - \sin \left( {\dfrac {{8\pi }}{{15}}} \right)\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)\cos \left( {\dfrac {{8\pi }}{{15}}} \right)}}{{8\sin \left( {\dfrac {\pi }{{15}}} \right)}}
Multiply and divide the equation by 2
\Rightarrow \dfrac {{ - \left\\{ {2\sin \left( {\dfrac {{8\pi }}{{15}}} \right)\cos \left( {\dfrac {{8\pi }}{{15}}} \right)} \right\\}\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)}}{{2 \times 8\sin \left( {\dfrac {\pi }{{15}}} \right)}} … (8)
Use the trigonometric formula2sinxcosx=sin2x2\sin x\cos x = \sin 2x. Substitute x=8π15x = \dfrac {{8\pi }}{{15}}
2sin8π15cos8π15=sin28π152\sin \dfrac {{8\pi }}{{15}}\cos \dfrac {{8\pi }}{{15}} = \sin 2\dfrac {{8\pi }}{{15}}
Multiply the value in RHS
2sin8π15cos8π15=sin16π152\sin \dfrac {{8\pi }}{{15}}\cos \dfrac {{8\pi }}{{15}} = \sin \dfrac {{16\pi }}{{15}} … (9)
Substitute the value from equation (9) in equation (8)
sin(16π15)cos(3π15)cos(5π15)cos(6π15)16sin(π15)\Rightarrow \dfrac {{ - \sin \left( {\dfrac {{16\pi }}{{15}}} \right)\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)}}{{16\sin \left( {\dfrac {\pi }{{15}}} \right)}} … (10)
Now we know sin(16π15)=sin(π+π15)\sin \left( {\dfrac {{16\pi }}{{15}}} \right) = \sin \left( {\pi + \dfrac {\pi }{{15}}} \right)
We find the value of sin(16π15)\sin \left( {\dfrac {{16\pi }}{{15}}} \right) from the quadrant diagram.

As we add an angle to π\pi , only the function tan remains positive.
Therefore, sin(π+π15)=sin(π15)\sin \left( {\pi + \dfrac {\pi }{{15}}} \right) = - \sin \left( {\dfrac {\pi }{{15}}} \right)
Substitute the value of sin(16π15)=sin(π15)\sin \left( {\dfrac {{16\pi }}{{15}}} \right) = - \sin \left( {\dfrac {\pi }{{15}}} \right) in equation (10)
(sin(π15))cos(3π15)cos(5π15)cos(6π15)16sin(π15)\Rightarrow \dfrac {{ - ( - \sin \left( {\dfrac {\pi }{{15}}} \right))\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)}}{{16\sin \left( {\dfrac {\pi }{{15}}} \right)}}
Cancel the same terms from numerator and denominator.
cos(3π15)cos(5π15)cos(6π15)16\Rightarrow \dfrac {{\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)}}{{16}}
cos(3π15)cos(π3)cos(6π15)16\Rightarrow \dfrac {{\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {\pi }{3}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)}}{{16}}
Substitute the value of cos(π3)=12\cos \left( {\dfrac {\pi }{3}} \right) = \dfrac {1}{2}
cos(3π15)cos(6π15)16×2\Rightarrow \dfrac {{\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)}}{{16 \times 2}}
cos(3π15)cos(6π15)32\Rightarrow \dfrac {{\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)}}{{32}} … (11)
First multiply and divide the equation by 2sin(3π15)2\sin \left( {\dfrac {{3\pi }}{{15}}} \right)
\Rightarrow \dfrac {{\left\\{ {2\sin \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{3\pi }}{{15}}} \right)} \right\\}\cos \left( {\dfrac {{6\pi }}{{15}}} \right)}}{{32 \times 2\sin \left( {\dfrac {{3\pi }}{{15}}} \right)}} … (12)
Use the trigonometric formula 2sinxcosx=sin2x2\sin x\cos x = \sin 2x. Substitute x=3π15x = \dfrac {{3\pi }}{{15}}
2sin3π15cos3π15=sin23π152\sin \dfrac {{3\pi }}{{15}}\cos \dfrac {{3\pi }}{{15}} = \sin 2\dfrac {{3\pi }}{{15}}
Multiply the value in RHS
2sin3π15cos3π15=sin6π152\sin \dfrac {{3\pi }}{{15}}\cos \dfrac {{3\pi }}{{15}} = \sin \dfrac {{6\pi }}{{15}} … (13)
Substitute the value from equation (13) in equation (12)
sin(6π15)cos(6π15)64sin(3π15)\Rightarrow \dfrac {{\sin \left( {\dfrac {{6\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)}}{{64\sin \left( {\dfrac {{3\pi }}{{15}}} \right)}}
Multiply and divide the equation by 2
\Rightarrow \dfrac {{\left\\{ {2\sin \left( {\dfrac {{6\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)} \right\\}}}{{2 \times 64\sin \left( {\dfrac {{3\pi }}{{15}}} \right)}} … (14)
Use the trigonometric formula 2sinxcosx=sin2x2\sin x\cos x = \sin 2x. Substitute x=6π15x = \dfrac {{6\pi }}{{15}}
2sin6π15cos6π15=sin26π152\sin \dfrac {{6\pi }}{{15}}\cos \dfrac {{6\pi }}{{15}} = \sin 2\dfrac {{6\pi }}{{15}}
Multiply the value in RHS
2sin6π15cos6π15=sin12π152\sin \dfrac {{6\pi }}{{15}}\cos \dfrac {{6\pi }}{{15}} = \sin \dfrac {{12\pi }}{{15}} … (15)
Substitute the value from equation (15) in equation (14)
sin(12π15)128sin(3π15)\Rightarrow \dfrac {{\sin \left( {\dfrac {{12\pi }}{{15}}} \right)}}{{128\sin \left( {\dfrac {{3\pi }}{{15}}} \right)}} … (16)
Now we know sin(12π15)=sin(π3π15)\sin \left( {\dfrac {{12\pi }}{{15}}} \right) = \sin \left( {\pi - \dfrac {{3\pi }}{{15}}} \right)
We find the value of sin(12π15)\sin \left( {\dfrac {{12\pi }}{{15}}} \right)from the quadrant diagram.

As we subtract an angle fromπ\pi , only the function sin remains positive.
Therefore, sin(π3π15)=sin(3π15)\sin \left( {\pi - \dfrac {{3\pi }}{{15}}} \right) = \sin \left( {\dfrac {{3\pi }}{{15}}} \right)
Substitute the value of sin(12π15)=sin(3π15)\sin \left( {\dfrac {{12\pi }}{{15}}} \right) = \sin \left( {\dfrac {{3\pi }}{{15}}} \right) in equation (16)
sin(3π15)128sin(3π15)\Rightarrow \dfrac {{\sin \left( {\dfrac {{3\pi }}{{15}}} \right)}}{{128\sin \left( {\dfrac {{3\pi }}{{15}}} \right)}}
Cancel the same terms from numerator and denominator.
1128\Rightarrow \dfrac {1}{{128}}
Therefore, value of cos(π15)cos(2π15)cos(3π15)cos(4π15)cos(5π15)cos(6π15)cos(7π15)\cos \left( {\dfrac {\pi }{{15}}} \right)\cos \left( {\dfrac {{2\pi }}{{15}}} \right)\cos \left( {\dfrac {{3\pi }}{{15}}} \right)\cos \left( {\dfrac {{4\pi }}{{15}}} \right)\cos \left( {\dfrac {{5\pi }}{{15}}} \right)\cos \left( {\dfrac {{6\pi }}{{15}}} \right)\cos \left( {\dfrac {{7\pi }}{{15}}} \right) is1128\dfrac {1}{{128}}.

Note: Students are likely to get confused while pairing up the values for cos and sin after the value of angle as 8π15\dfrac {{8\pi }}{{15}}, keep in mind we break the angle with addition and subtraction to π\pi . Always check the angle from the quadrant diagram as when we add an angle we move in anticlockwise direction and when we subtract an angle we move in clockwise direction.