Solveeit Logo

Question

Question: Find the value of \[\cos \left( {{40}^{\circ }}+\theta \right)-\sin \left( {{50}^{\circ }}-\theta \r...

Find the value of cos(40+θ)sin(50θ)\cos \left( {{40}^{\circ }}+\theta \right)-\sin \left( {{50}^{\circ }}-\theta \right) ?
A. 1
B. 0
C. sin20\sin {{20}^{\circ }}
D. None of these

Explanation

Solution

First let us assume that the value of (40+θ)\left( {{40}^{\circ }}+\theta \right) as xx after that we change the 50{{50}^{\circ }} into 40{{40}^{\circ }} by subtracting it with 90{{90}^{\circ }} thereby finding the value of the given term.

Complete step by step solution:
According to the question given, we assume that the angle (40+θ)\left( {{40}^{\circ }}+\theta \right) is equal to xx and after that we place the value in the equation cos(40+θ)sin(50θ)\cos \left( {{40}^{\circ }}+\theta \right)- \sin \left( {{50}^{\circ }}-\theta \right).
So let us place the value in the above term as:
cos(x)sin(50θ)\Rightarrow \cos \left( x \right)-\sin \left( {{50}^{\circ }}-\theta \right)
After this we change the value of sin(50θ)\sin \left( {{50}^{\circ }}-\theta \right) into such a form that we can place the value xx in it so we take 90{{90}^{\circ }} and subtract it by 50{{50}^{\circ }} to get:
cos(x)sin(90x)\Rightarrow \cos \left( x \right)-\sin \left( {{90}^{\circ }}-x \right) (Placing the value of (40+θ)\left( {{40}^{\circ }}+\theta \right) is equal to xx)
Now according to trigonometry identities, the value of sin(90A)=cosA\sin \left( {{90}^{\circ }}-A \right)=\cos A, we get the value as:
cos(x)cos(x)=0\Rightarrow \cos \left( x \right)-\cos \left( x \right)=0
Therefore, the value of cos(40+θ)sin(50θ)=0\cos \left( {{40}^{\circ }}+\theta \right)-\sin \left( {{50}^{\circ }}-\theta \right)=0.

Note: The value of the trigonometry identity is given as cos(90A)=sinA,sin(90A)=cosA\cos \left( {{90}^{\circ }}-A \right)=\sin A,\sin \left( {{90}^{\circ }}-A \right)=\cos A.