Solveeit Logo

Question

Question: Find the value of \(\cos \dfrac{\pi }{7} + \cos \dfrac{{3\pi }}{7} + \cos \dfrac{{5\pi }}{7}\)...

Find the value of cosπ7+cos3π7+cos5π7\cos \dfrac{\pi }{7} + \cos \dfrac{{3\pi }}{7} + \cos \dfrac{{5\pi }}{7}

Explanation

Solution

In this question we will use cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) and convert cos(3π7)+cos(5π7)=2cos4π7cosπ7\cos \left( {\dfrac{{3\pi }}{7}} \right) + \cos \left( {\dfrac{{5\pi }}{7}} \right) = 2\cos \dfrac{{4\pi }}{7}\cos \dfrac{\pi }{7} then we will take cosπ7\cos \dfrac{\pi }{7} common and after simplifying we get the answer.

Complete step-by-step answer:
cosπ7+cos3π7+cos5π7\cos \dfrac{\pi }{7} + \cos \dfrac{{3\pi }}{7} + \cos \dfrac{{5\pi }}{7}
We know that cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
Converting cos(3π7)+cos(5π7)\cos \left( {\dfrac{{3\pi }}{7}} \right) + \cos \left( {\dfrac{{5\pi }}{7}} \right) we get
cosπ7+2cos(3π7+5π72)cos(3π75π72)\Rightarrow \cos \dfrac{\pi }{7} + 2\cos \left( {\dfrac{{\dfrac{{3\pi }}{7} + \dfrac{{5\pi }}{7}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{3\pi }}{7} - \dfrac{{5\pi }}{7}}}{2}} \right)
On simplifying we get
cosπ7+2cos4π7cosπ7\Rightarrow \cos \dfrac{\pi }{7} + 2\cos \dfrac{{4\pi }}{7}\cos \dfrac{\pi }{7}
Taking cosπ7\cos \dfrac{\pi }{7} common we get
cosπ7(1+2cos4π7)\Rightarrow \cos \dfrac{\pi }{7}\left( {1 + 2\cos \dfrac{{4\pi }}{7}} \right)
cosπ7+cos3π7+cos5π7=cosπ7(1+2cos4π7)\therefore \cos \dfrac{\pi }{7} + \cos \dfrac{{3\pi }}{7} + \cos \dfrac{{5\pi }}{7} = \cos \dfrac{\pi }{7}\left( {1 + 2\cos \dfrac{{4\pi }}{7}} \right)

Note: We can also simplify it further and convert cos4π7=cos(π3π7)=cos3π7\cos \dfrac{{4\pi }}{7} = \cos \left( {\pi - \dfrac{{3\pi }}{7}} \right) = - \cos \dfrac{{3\pi }}{7} then answer will become =cosπ7(12cos3π7)\therefore = \cos \dfrac{\pi }{7}\left( {1 - 2\cos \dfrac{{3\pi }}{7}} \right) or substitute the value of cosπ7\cos \dfrac{\pi }{7} but it is not know so we can leave it as usual.