Solveeit Logo

Question

Question: Find the value of \[\cos \dfrac{{2\pi }}{3}\cos \dfrac{\pi }{4} - \sin \dfrac{{2\pi }}{3}\sin \dfr...

Find the value of
cos2π3cosπ4sin2π3sinπ4\cos \dfrac{{2\pi }}{3}\cos \dfrac{\pi }{4} - \sin \dfrac{{2\pi }}{3}\sin \dfrac{\pi }{4}

Explanation

Solution

In this question, we have to simplify the given expression using trigonometric values.
First, we have to simplify each term. For doing that we need to evaluate the quadrant where the angle lies for each term and find out the cosine and sine function accordingly. Putting all the values and by simplifying the expression we will get the required solution.


In the first quadrant (0toπ20to\dfrac{\pi }{2}) all trigonometric functions are positive, in the second quadrant (π2toπ\dfrac{\pi }{2}to\pi ) only sine function is positive, in third quadrant (πto3π2\pi to\dfrac{{3\pi }}{2})tan function is positive, in the fourth quadrant
(3π2to2π\dfrac{{3\pi }}{2}to2\pi ) cosine functions are positive.

Complete step by step answer:
It is given that,cos2π3cosπ4sin2π3sinπ4\cos \dfrac{{2\pi }}{3}\cos \dfrac{\pi }{4} - \sin \dfrac{{2\pi }}{3}\sin \dfrac{\pi }{4}
We need to find out the value ofcos2π3cosπ4sin2π3sinπ4\cos \dfrac{{2\pi }}{3}\cos \dfrac{\pi }{4} - \sin \dfrac{{2\pi }}{3}\sin \dfrac{\pi }{4}.
Now,2π3\dfrac{{2\pi }}{3} can be written as(ππ3)\left( {\pi - \dfrac{\pi }{3}} \right).
To simplify the given expression, we need to simplify each term.
2π3\dfrac{{2\pi }}{3}lies in the II quadrant where cosine is negative and sine is positive.
Thus, cos2π3=cos(ππ3)=cosπ3=12\cos \dfrac{{2\pi }}{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right) = - \cos \dfrac{\pi }{3} = - \dfrac{1}{2}
sin2π3=sin(ππ3)=sinπ3=32\sin \dfrac{{2\pi }}{3} = \sin \left( {\pi - \dfrac{\pi }{3}} \right) = \sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}
[we can the formula also,

cos(πx)=cosx sin(πx)=sinx  \cos (\pi - x) = - \cos x \\\ \sin \left( {\pi - x} \right) = \sin x \\\

& the values

\cos \dfrac{\pi }{3} = \dfrac{1}{2} \\\ \sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2} \\\ $$] Again, we know that,$$\cos \dfrac{\pi }{4} = \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$$ Putting the values, we get in the given expression we get, $$\cos \dfrac{{2\pi }}{3}\cos \dfrac{\pi }{4} - \sin \dfrac{{2\pi }}{3}\sin \dfrac{\pi }{4}$$ $$ = - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}$$ $$ = - \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$$ $$ = - \dfrac{{\left( {1 + \sqrt 3 } \right)}}{{2\sqrt 2 }}$$ Hence simplifying,$$\cos \dfrac{{2\pi }}{3}\cos \dfrac{\pi }{4} - \sin \dfrac{{2\pi }}{3}\sin \dfrac{\pi }{4}$$$$ = - \dfrac{{\left( {1 + \sqrt 3 } \right)}}{{2\sqrt 2 }}$$ **Note:** Trigonometric expression: Sin and cos formulas are calculated based on the sides of a right-angled triangle. The sine of an angle is equal to the ratio of the opposite side and the hypotenuse whereas the cosine of an angle is equal to the ratio of the adjacent side and the hypotenuse.

\sin \theta = \dfrac{{Opposite Side}}{{Hypotenuse}} \\
\cos \theta = \dfrac{{Adjacent}}{{Hypotenuse}} \\

![](https://www.vedantu.com/questionsets/994a88a84dd249059768f4e177bce9c55980376387386991980.png)Inmathematics,trigonometricfunctionsarerealfunctions.Wecanfindoutthatthemostwidelyusedtrigonometricfunctionsarethesine,cosineandtangent.![](https://www.vedantu.com/question-sets/994a88a8-4dd2-4905-9768-f4e177bce9c55980376387386991980.png) In mathematics, trigonometric functions are real functions. We can find out that the most widely used trigonometric functions are the sine, cosine and tangent.