Solveeit Logo

Question

Question: Find the value of \(\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin ...

Find the value of cos60×cos30+sin60×sin30\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}.

Explanation

Solution

Hint: Here, cos60×cos30+sin60×sin30\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }} is of the form cosAcosB+sinAsinB\cos A\cos B+\sin A\sin B where A=60A={{60}^{\circ }} and B=30B={{30}^{\circ }}. This is the expansion of cos(AB)\cos (A-B) where AB=6030A-B={{60}^{\circ }}-{{30}^{\circ }}. We also have to apply the trigonometric formulas:
cos(90A)=sinA\cos ({{90}^{\circ }}-A)=\sin A
sin(90A)=cosA\sin ({{90}^{\circ }}-A)=\cos A
sin2A=2sinAcosA\sin 2A=2\sin A\cos A

Complete step-by-step answer:
Here, we have to find the value of:
cos60×cos30+sin60×sin30\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}
Hence, the above equation is of the form cosAcosB+sinAsinB\cos A\cos B+\sin A\sin B, which is the expansion of cos(AB)\cos (A-B). i.e. we have the formula:
cos(AB)=cosAcosB+sinAsinB\cos (A-B)=\cos A\cos B+\sin A\sin B
Since, we haveA=60A={{60}^{\circ }} and B=30B={{30}^{\circ }}. We can apply the above formula where:
cos(AB)=cos(6030)\cos (A-B)=\cos ({{60}^{\circ }}-{{30}^{\circ }})
That is, we obtain the equation:
cos(6030)=cos60cos30+sin60sin30 cos30=cos60cos30+sin60sin30 \begin{aligned} & \cos ({{60}^{\circ }}-{{30}^{\circ }})=\cos {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{60}^{\circ }}\sin {{30}^{\circ }} \\\ & \cos {{30}^{\circ }}=\cos {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{60}^{\circ }}\sin {{30}^{\circ }} \\\ \end{aligned}
We know that the value of cos30=32\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}.
Therefore, we will get:
cos60cos30+sin60sin30=cos30=32\cos {{60}^{\circ }}\cos {{30}^{\circ }}+\sin {{60}^{\circ }}\sin {{30}^{\circ }}=\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}
Hence we can say that the value will be:
cos60×cos30+sin60×sin30=32\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}
OR
Here, there is another method to find the solution, i.e. by directly substituting the values for cos60=12 cos30=32 sin60=32 sin30=12 \begin{aligned} & \cos {{60}^{\circ }}=\dfrac{1}{2} \\\ & \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\\ & \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\\ & \sin {{30}^{\circ }}=\dfrac{1}{2} \\\ \end{aligned}
Hence by substituting all these values in cos60×cos30+sin60×sin30\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}we get:
cos60×cos30+sin60×sin30=12×32+32×12\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{1}{2}\times \dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\times \dfrac{1}{2}
Next by simplification we get:
cos60×cos30+sin60×sin30=34+34\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{4}+\dfrac{\sqrt{3}}{4}
Now, by taking the LCM we get:
cos60×cos30+sin60×sin30=3+34 cos60×cos30+sin60×sin30=234 \begin{aligned} & \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}+\sqrt{3}}{4} \\\ & \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{2\sqrt{3}}{4} \\\ \end{aligned}
By cancellation, we get:
cos60×cos30+sin60×sin30=32\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}
OR
We can also solve this problem by using the formulas:
sin(90A)=cosA cos(90A)=sinA \begin{aligned} & \sin ({{90}^{\circ }}-A)=\cos A \\\ & \cos ({{90}^{\circ }}-A)=\sin A \\\ \end{aligned}
i.e. we can write:
cos30=sin(9030) cos30=sin60 ..... (1) \begin{aligned} & \cos {{30}^{\circ }}=\sin ({{90}^{\circ }}-{{30}^{\circ }}) \\\ & \cos {{30}^{\circ }}=\sin {{60}^{\circ }}\text{ }.....\text{ (1)} \\\ \end{aligned}
Similarly, we will get:
sin30=cos(9030) sin30=cos60 ..... (2) \begin{aligned} & \sin {{30}^{\circ }}=\cos ({{90}^{\circ }}-{{30}^{\circ }}) \\\ & \sin {{30}^{\circ }}=\cos {{60}^{\circ }}\text{ }.....\text{ (2)} \\\ \end{aligned}
By applying equation (1) and equation (2) in cos60×cos30+sin60×sin30\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}we get:
cos60×cos30+sin60×sin30=cos60sin60+sin60cos60 cos60×cos30+sin60×sin30=2cos60sin60 ..... (3) \begin{aligned} & \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\cos {{60}^{\circ }}\sin {{60}^{\circ }}+\sin {{60}^{\circ }}\cos {{60}^{\circ }} \\\ & \cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=2\cos {{60}^{\circ }}\sin {{60}^{\circ }}\text{ }.....\text{ (3)} \\\ \end{aligned}
We know the formula that:
sin2A=2sinAcosA\sin 2A=2\sin A\cos A
That is, we will get:
2cos60sin60=sin2×60 2cos60sin60=sin120 2cos60sin60=sin(18060) \begin{aligned} & 2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin 2\times {{60}^{\circ }} \\\ & 2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin {{120}^{\circ }} \\\ & 2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin \left( {{180}^{\circ }}-{{60}^{\circ }} \right) \\\ \end{aligned}
We, also know that sin(180A)=sinA\sin \left( {{180}^{\circ }}-A \right)=\sin A. i.e.
sin(18060)=sin60\sin \left( {{180}^{\circ }}-{{60}^{\circ }} \right)=\sin {{60}^{\circ }}
Therefore, we will get:
2cos60sin60=sin60 ..... (4)2\cos {{60}^{\circ }}\sin {{60}^{\circ }}=\sin {{60}^{\circ }}\text{ }.....\text{ (4)}
By substituting equation (4) in equation (3) we obtain:
By substituting this formula above we obtain:
cos60×cos30+sin60×sin30=sin60\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\sin {{60}^{\circ }}
We know that sin60=32\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}, therefore we get:
cos60×cos30+sin60×sin30=32\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}

Note: We can find the value of cos60×cos30+sin60×sin30\cos {{60}^{\circ }}\times \cos {{30}^{\circ }}+\sin {{60}^{\circ }}\times \sin {{30}^{\circ }} by using any one of the above methods. If we know the basic sine and cosine values, then directly by substituting the values we will get the answer easily.