Solveeit Logo

Question

Question: Find the value of \(\cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}\)....

Find the value of cos55+cos65+cos175\cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}.

Explanation

Solution

We solve this question by first converting the value cos175\cos {{175}^{\circ }} into smaller angle using the formula cos(180A)=cosA\cos \left( {{180}^{\circ }}-A \right)=-\cos A. Then we substitute it in the given expression. Then we consider the value of cos65+cos175\cos {{65}^{\circ }}+\cos {{175}^{\circ }} and substitute the above obtained value of cos175\cos {{175}^{\circ }}. Then we use the formula cosAcosB=2sin(A+B2)sin(AB2)\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) and simplify it. Then we substitute the value sin(30)=12\sin \left( {{30}^{\circ }} \right)=\dfrac{1}{2} in it and then we use the formula sin(90A)=cosA\sin \left( {{90}^{\circ }}-A \right)=\cos A and find the value in terms of cosine. Then we substitute this value in the given expression and solve it to find the required value.

Complete step-by-step solution
We are asked to find the value of cos55+cos65+cos175\cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}.
First let us consider the value of cos175\cos {{175}^{\circ }}.
Now let us consider the formula,
cos(180A)=cosA\cos \left( {{180}^{\circ }}-A \right)=-\cos A
Using this formula, we can write cos175\cos {{175}^{\circ }} as,
cos175=cos(1805) cos175=cos5 \begin{aligned} & \Rightarrow \cos {{175}^{\circ }}=\cos \left( {{180}^{\circ }}-{{5}^{\circ }} \right) \\\ & \Rightarrow \cos {{175}^{\circ }}=-\cos {{5}^{\circ }} \\\ \end{aligned}
So, substituting this in the given expression we can write it as,
cos55+cos65+cos175=cos55+cos65cos5.............(1)\Rightarrow \cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}=\cos {{55}^{\circ }}+\cos {{65}^{\circ }}-\cos {{5}^{\circ }}.............\left( 1 \right)
Now let us consider the trigonometric expression,
cos65+cos175=cos65cos5\Rightarrow \cos {{65}^{\circ }}+\cos {{175}^{\circ }}=\cos {{65}^{\circ }}-\cos {{5}^{\circ }}
Now let us consider the formula,
cosAcosB=2sin(A+B2)sin(AB2)\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)
So, using this formula we can write the above expression as,
cos65cos5=2sin(65+52)sin(6552) cos65cos5=2sin(702)sin(602) cos65cos5=2sin(35)sin(30) \begin{aligned} & \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-2\sin \left( \dfrac{{{65}^{\circ }}+{{5}^{\circ }}}{2} \right)\sin \left( \dfrac{{{65}^{\circ }}-{{5}^{\circ }}}{2} \right) \\\ & \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-2\sin \left( \dfrac{{{70}^{\circ }}}{2} \right)\sin \left( \dfrac{{{60}^{\circ }}}{2} \right) \\\ & \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-2\sin \left( {{35}^{\circ }} \right)\sin \left( {{30}^{\circ }} \right) \\\ \end{aligned}
Now let us substitute the value of sin(30)=12\sin \left( {{30}^{\circ }} \right)=\dfrac{1}{2} in the above equation. Then we get,
cos65cos5=2sin(35)sin(30) cos65cos5=2sin(35)×12 cos65cos5=sin35 cos65cos5=sin(9055) \begin{aligned} & \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-2\sin \left( {{35}^{\circ }} \right)\sin \left( {{30}^{\circ }} \right) \\\ & \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-2\sin \left( {{35}^{\circ }} \right)\times \dfrac{1}{2} \\\ & \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-\sin {{35}^{\circ }} \\\ & \Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-\sin \left( {{90}^{\circ }}-{{55}^{\circ }} \right) \\\ \end{aligned}
Now let us consider the formula,
sin(90A)=cosA\sin \left( {{90}^{\circ }}-A \right)=\cos A
Using it we can write the above equation as,
cos65cos5=cos55............(2)\Rightarrow \cos {{65}^{\circ }}-\cos {{5}^{\circ }}=-\cos {{55}^{\circ }}............\left( 2 \right)
Substituting the value obtained in equation (2) in the equation (1) we get,
cos55+cos65+cos175=cos55+cos65cos5 cos55+cos65+cos175=cos55cos55 cos55+cos65+cos175=0 \begin{aligned} & \Rightarrow \cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}=\cos {{55}^{\circ }}+\cos {{65}^{\circ }}-\cos {{5}^{\circ }} \\\ & \Rightarrow \cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}=\cos {{55}^{\circ }}-\cos {{55}^{\circ }} \\\ & \Rightarrow \cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }}=0 \\\ \end{aligned}
So, we get the value of cos55+cos65+cos175\cos {{55}^{\circ }}+\cos {{65}^{\circ }}+\cos {{175}^{\circ }} as 0. Hence the answer is 0.

Note: The common mistakes one makes while solving this question is one might take the formulas wrongly as, cos(180A)=cosA\cos \left( {{180}^{\circ }}-A \right)=\cos A but it should have the negative sign and might write the formula as cosAcosB=2cos(A+B2)cos(AB2)\cos A-\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) by confusing with the formula cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right).