Solveeit Logo

Question

Question: Find the value of \({{\cos }^{3}}\theta +{{\cos }^{3}}\left( {{120}^{\circ }}+\theta \right)+{{\cos ...

Find the value of cos3θ+cos3(120+θ)+cos3(120θ){{\cos }^{3}}\theta +{{\cos }^{3}}\left( {{120}^{\circ }}+\theta \right)+{{\cos }^{3}}\left( {{120}^{\circ }}-\theta \right)
A) 34sin3θ\dfrac{3}{4}\sin 3\theta
B) 34cos3θ\dfrac{3}{4}\cos 3\theta
C) 34tan3θ\dfrac{3}{4}\tan 3\theta
D) 34cot3θ\dfrac{3}{4}\cot 3\theta

Explanation

Solution

We have to solve the given trigonometric expression. For that, we will use the trigonometric identities for each term of the expression and then we will simplify the terms one by one and then add and subtract the like terms to get the simplified and final value of the given trigonometric expression.

Complete step by step solution:
We have
cos3θ+cos3(120+θ)+cos3(120θ){{\cos }^{3}}\theta +{{\cos }^{3}}\left( {{120}^{\circ }}+\theta \right)+{{\cos }^{3}}\left( {{120}^{\circ }}-\theta \right) ………. (1)\left( 1 \right)
We know the trigonometric identity that
cos3θ=4cos3θ3cosθ\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta
We can write this identity as
cos3θ=cos3θ+3cosθ4{{\cos }^{3}}\theta =\dfrac{\cos 3\theta +3\cos \theta }{4}
Now, we will use this identity for all three terms in equation 1.
=cos3θ+3cosθ4+cos3(120+θ)+3cos(120+θ)4+cos3(120θ)+3cos(120θ)4=\dfrac{\cos 3\theta +3\cos \theta }{4}+\dfrac{\cos 3\left( {{120}^{\circ }}+\theta \right)+3\cos \left( {{120}^{\circ }}+\theta \right)}{4}+\dfrac{\cos 3\left( {{120}^{\circ }}-\theta \right)+3\cos \left( {{120}^{\circ }}-\theta \right)}{4}
On simplifying the terms, we get
=cos3θ+3cosθ4+cos(360+3θ)+3cos(120+θ)4+cos(3603θ)+3cos(120θ)4=\dfrac{\cos 3\theta +3\cos \theta }{4}+\dfrac{\cos \left( {{360}^{\circ }}+3\theta \right)+3\cos \left( {{120}^{\circ }}+\theta \right)}{4}+\dfrac{\cos \left( {{360}^{\circ }}-3\theta \right)+3\cos \left( {{120}^{\circ }}-\theta \right)}{4}
Taking 14\dfrac{1}{4} common from all the terms, we get
=14[cos3θ+3cosθ+cos(360+3θ)+3cos(120+θ)+cos(3603θ)+3cos(120θ)]=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos \left( {{360}^{\circ }}+3\theta \right)+3\cos \left( {{120}^{\circ }}+\theta \right)+\cos \left( {{360}^{\circ }}-3\theta \right)+3\cos \left( {{120}^{\circ }}-\theta \right) \right]
Using periodic identities for the terms, we get
=14[cos3θ+3cosθ+cos3θ+3cos(120+θ)+cos3θ+3cos(120θ)]=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos 3\theta +3\cos \left( {{120}^{\circ }}+\theta \right)+\cos 3\theta +3\cos \left( {{120}^{\circ }}-\theta \right) \right]
We know from the sum to product formulas of trigonometry that
cosA+cosB =2cosA+B2. cosAB2 \cos A+\cos B\text{ }=2\cos \frac{A+B}{2}.~\cos \frac{A-B}{2}~.
We will use the trigonometric formula for the terms cos(120θ)\cos \left( {{120}^{\circ }}-\theta \right) and cos(120+θ)\cos \left( {{120}^{\circ }}+\theta \right).
=14[cos3θ+3cosθ+cos3θ+cos3θ+3×2×cos(120+θ+120θ2)×cos(120+θ120+θ2)]=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos 3\theta +\cos 3\theta +3\times 2\times \cos \left( \dfrac{{{120}^{\circ }}+\theta +{{120}^{\circ }}-\theta }{2} \right)\times \cos \left( \dfrac{{{120}^{\circ }}+\theta -{{120}^{\circ }}+\theta }{2} \right) \right]
On simplifying the terms inside the brackets, we get
=14[cos3θ+3cosθ+cos3θ+cos3θ+3cos120×cosθ]=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos 3\theta +\cos 3\theta +3\cos {{120}^{\circ }}\times \cos \theta \right] ……… (2)\left( 2 \right)
We know the value of cos120\cos {{120}^{\circ }} is 12-\dfrac{1}{2} .
Therefore, substituting the values in equation 2, we get
=14[cos3θ+3cosθ+cos3θ+cos3θ+3×2×12×cosθ]=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos 3\theta +\cos 3\theta +3\times 2\times -\dfrac{1}{2}\times \cos \theta \right]
On further simplification, we get
=14[cos3θ+3cosθ+cos3θ+cos3θ3cosθ]=\dfrac{1}{4}\left[ \cos 3\theta +3\cos \theta +\cos 3\theta +\cos 3\theta -3\cos \theta \right]
Adding and subtracting the like terms inside the bracket, we get
=14[cos3θ+cos3θ+cos3θ]=\dfrac{1}{4}\left[ \cos 3\theta +\cos 3\theta +\cos 3\theta \right]
Adding the terms inside the bracket, we get
=34cos3θ=\dfrac{3}{4}\cos 3\theta

Thus, the correct option is option B.

Note:
We need to know the meaning of the trigonometric identities as we have used the trigonometric identities in this question. Trigonometric identities are defined as the equalities which involve the trigonometric functions and they are true for every value of the occurring variables for which both sides of the equality are defined. Remember that all the trigonometric identities are periodic in nature. They repeat their values after a certain interval.