Question
Question: Find the value of \({{\cos }^{3}}\theta +{{\cos }^{3}}\left( {{120}^{\circ }}+\theta \right)+{{\cos ...
Find the value of cos3θ+cos3(120∘+θ)+cos3(120∘−θ)=
A. 43sin3θ
B. 43cos3θ
C. 43tan3θ
D. 43cot3θ
Solution
Observe the value of cosθ+cos(120∘+θ)+cos(120∘−θ) .
If a+b+c=0 , then a3+b3+c3=3abc .
The following identities are useful:
sin2θ+cos2θ=1
cos(A±B)=cosAcosB∓sinAsinB
cos(A+B)cos(A−B)=cos2A−sin2B
Use the fact that cos(π−θ)=−cosθ and cos60∘=21 .
Triple angle formula: cos3θ=4cos3θ−3cosθ .
Complete step-by-step answer:
Let us look at the value of cosθ+cos(120∘+θ)+cos(120∘−θ) .
We know that cos(A±B)=cosAcosB∓sinAsinB .
= cosθ+(cos120∘cosθ−sin120∘sinθ)+(cos120∘cosθ+sin120∘sinθ)
= cosθ+2cos120∘cosθ
= cosθ+2cos(180∘−60∘)cosθ
Using cos(π−θ)=−cosθ , we get:
= cosθ+2(−cos60∘)cosθ
Substituting the value cos60∘=21 , we get:
= cosθ+2(−21)cosθ
= cosθ−cosθ
= 0
Now, we also know that if a+b+c=0 , then a3+b3+c3=3abc .
∴ cos3θ+cos3(120∘+θ)+cos3(120∘−θ)
= 3cosθcos(120∘+θ)cos(120∘−θ)
Using cos(A+B)cos(A−B)=cos2A−sin2B , we get:
= 3cosθ(cos2120∘−sin2θ)
Substituting the value of cos120∘=−21 calculated earlier and squaring it, we get:
= 3cosθ(41−sin2θ)
Using sin2θ+cos2θ=1 , we can write:
= 3cosθ(41+cos2θ−1)
= 3cosθ(cos2θ−43)
Taking out 41 as a common multiple, this can be written as:
= 43cosθ(4cos2θ−3)
= 43(4cos3θ−3cosθ)
On using the triple angle formula cos3θ=4cos3θ−3cosθ , we get:
= 43cos3θ
Hence, the correct answer is B. 43cos3θ .
Note: (i)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
If a+b+c=0 , then a3+b3+c3=3abc .
(ii)Using the identity for sin(A+B) and cos(A+B) , we can find the expressions of sin3A and cos3A by using the fact that 3A=2A+A , and then sin5A and cos5A as 5A=3A+2A , and so on.
(iii)Since sin2A+cos2A=1 , we can always calculate cosA from sinA , and then the other ratios follow.