Solveeit Logo

Question

Question: Find the value of \({{\cos }^{3}}\theta +{{\cos }^{3}}\left( {{120}^{\circ }}+\theta \right)+{{\cos ...

Find the value of cos3θ+cos3(120+θ)+cos3(120θ)={{\cos }^{3}}\theta +{{\cos }^{3}}\left( {{120}^{\circ }}+\theta \right)+{{\cos }^{3}}\left( {{120}^{\circ }}-\theta \right)=
A. 34sin3θ\dfrac{3}{4}\sin 3\theta
B. 34cos3θ\dfrac{3}{4}\cos 3\theta
C. 34tan3θ\dfrac{3}{4}\tan 3\theta
D. 34cot3θ\dfrac{3}{4}\cot 3\theta

Explanation

Solution

Observe the value of cosθ+cos(120+θ)+cos(120θ)\cos \theta +\cos \left( {{120}^{\circ }}+\theta \right)+\cos \left( {{120}^{\circ }}-\theta \right) .
If a+b+c=0a+b+c=0 , then a3+b3+c3=3abc{{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc .
The following identities are useful:
sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos}^{2}}\theta =1
cos(A±B)=cosAcosBsinAsinB\cos (A\pm B)=\cos A\cos B\mp \sin A\sin B
cos(A+B)cos(AB)=cos2Asin2B\cos (A+B)\cos (A-B)={{\cos }^{2}}A-{{\sin }^{2}}B
Use the fact that cos(πθ)=cosθ\cos (\pi -\theta )=-\cos \theta and cos60=12\cos 60^{\circ } =\dfrac{1}{2} .
Triple angle formula: cos3θ=4cos3θ3cosθ\cos 3\theta =4{{\cos }^{3}}\theta -3\cos\theta .

Complete step-by-step answer:
Let us look at the value of cosθ+cos(120+θ)+cos(120θ)\cos \theta +\cos \left( {{120}^{\circ }}+\theta \right)+\cos \left( {{120}^{\circ }}-\theta \right) .
We know that cos(A±B)=cosAcosBsinAsinB\cos (A\pm B)=\cos A\cos B\mp \sin A\sin B .
= cosθ+(cos120cosθsin120sinθ)+(cos120cosθ+sin120sinθ)\cos \theta +\left( \cos {{120}^{\circ }}\cos \theta -\sin {{120}^{\circ }}\sin \theta \right)+\left( \cos {{120}^{\circ }}\cos \theta +\sin {{120}^{\circ }}\sin \theta \right)
= cosθ+2cos120cosθ\cos \theta +2\cos {{120}^{\circ }}\cos \theta
= cosθ+2cos(18060)cosθ\cos \theta +2\cos \left( {{180}^{\circ }}-{{60}^{\circ }} \right)\cos \theta
Using cos(πθ)=cosθ\cos (\pi -\theta )=-\cos \theta , we get:
= cosθ+2(cos60)cosθ\cos \theta +2\left( -\cos {{60}^{\circ }} \right)\cos \theta
Substituting the value cos60=12\cos 60^{\circ } =\dfrac{1}{2} , we get:
= cosθ+2(12)cosθ\cos \theta +2\left( -\dfrac{1}{2} \right)\cos \theta
= cosθcosθ\cos \theta -\cos \theta
= 0
Now, we also know that if a+b+c=0a+b+c=0 , then a3+b3+c3=3abc{{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc .
cos3θ+cos3(120+θ)+cos3(120θ){{\cos }^{3}}\theta +{{\cos }^{3}}\left( {{120}^{\circ }}+\theta \right)+{{\cos }^{3}}\left( {{120}^{\circ }}-\theta \right)
= 3cosθcos(120+θ)cos(120θ)3\cos \theta \cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{120}^{\circ }}-\theta \right)
Using cos(A+B)cos(AB)=cos2Asin2B\cos (A+B)\cos (A-B)={{\cos }^{2}}A-{{\sin }^{2}}B , we get:
= 3cosθ(cos2120sin2θ)3\cos \theta \left( {{\cos }^{2}}{{120}^{\circ }}-{{\sin }^{2}}\theta \right)
Substituting the value of cos120=12\cos 120^{\circ }=-\dfrac{1}{2} calculated earlier and squaring it, we get:
= 3cosθ(14sin2θ)3\cos \theta \left( \dfrac{1}{4}-{{\sin }^{2}}\theta \right)
Using sin2θ+cos2θ=1{{\sin }^{2}}\theta + {{\cos}^{2}}\theta =1 , we can write:
= 3cosθ(14+cos2θ1)3\cos \theta \left( \dfrac{1}{4}+{{\cos }^{2}}\theta -1 \right)
= 3cosθ(cos2θ34)3\cos \theta \left( {{\cos }^{2}}\theta -\dfrac{3}{4} \right)
Taking out 14\dfrac{1}{4} as a common multiple, this can be written as:
= 34cosθ(4cos2θ3)\dfrac{3}{4}\cos \theta \left( 4{{\cos }^{2}}\theta -3 \right)
= 34(4cos3θ3cosθ)\dfrac{3}{4}\left( 4{{\cos }^{3}}\theta -3\cos \theta \right)
On using the triple angle formula cos3θ=4cos3θ3cosθ\cos 3\theta =4{{\cos }^{3}}\theta -3\cos\theta , we get:
= 34cos3θ\dfrac{3}{4}\cos 3\theta
Hence, the correct answer is B. 34cos3θ\dfrac{3}{4}\cos 3\theta .

Note: (i)a3+b3+c33abc=(a+b+c)(a2+b2+c2abbcca){{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=(a+b+c)({{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca)
If a+b+c=0a+b+c=0 , then a3+b3+c3=3abc{{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3abc .
(ii)Using the identity for sin(A+B)\sin (A+B) and cos(A+B)\cos (A+B) , we can find the expressions of sin3A\sin 3A and cos3A\cos 3A by using the fact that 3A=2A+A3A=2A+A , and then sin5A\sin 5A and cos5A\cos 5A as 5A=3A+2A5A=3A+2A , and so on.
(iii)Since sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1 , we can always calculate cosA\cos A from sinA\sin A , and then the other ratios follow.