Solveeit Logo

Question

Question: Find the value of \[\cos 225^\circ-\sin 225^\circ+\tan 495^\circ-\cot 495^\circ\]....

Find the value of cos225sin225+tan495cot495\cos 225^\circ-\sin 225^\circ+\tan 495^\circ-\cot 495^\circ.

Explanation

Solution

For angle between 0 to 2π2\pi, all trigonometric angles can be rotated by π2\dfrac{\pi}{2}, π\pi and 2π2\pi following the sign convention of the angles in the four quadrants.
In the first quadrant, all trigonometric angles are positive. In the second quadrant, only sinsin and coseccosec are positive. In the third quadrant, only tantan and cotcot are positive. And in the fourth quadrant, coscos and secsec is positive.

Complete step-by-step answer:
Given expression is cos225sin225+tan495cot495\cos 225^\circ-\sin 225^\circ+\tan 495^\circ-\cot 495^\circ.
Using the transformation cos(π+x)=cosx\cos (\pi+x) = -\cos x and sin(π+x)=sinx\sin (\pi+x) = -\sin x, simplify the expression as,

= -\cos 45^\circ+\sin 45^\circ+\tan 495^\circ-\cot 495^\circ$$ Using the transformation $$\tan (2\pi+x) = \tan x$$ and $$\cot (2\pi+x) = \cot x$$, simplify the expression as, $$-\cos 45^\circ+\sin 45^\circ+\tan (360+135)^\circ-\cot (360+135)^\circ\\\ = -\cos 45^\circ+\sin 45^\circ+\tan 135^\circ-\cot 135^\circ$$ Using the transformation $$\tan \left(\dfrac{\pi}{2}+x\right) = -\tan x$$ and $$\cot \left(\dfrac{\pi}{2}+x\right) = -\cot x$$, simplify the remaining expression as, $$-\cos 45^\circ+\sin 45^\circ+\tan 135^\circ-\cot 135^\circ\\\ = -\cos 45^\circ+\sin 45^\circ-\tan 45^\circ+\cot 45^\circ$$ Using the value $$\cos 45^\circ = \sin 45^\circ = \dfrac{1}{\sqrt{2}}$$ and $$\tan 45^\circ = \cot 45^\circ = 1$$, the value of the expression is, $$\begin{align*}-\cos 45^\circ+\sin 45^\circ-\tan 45^\circ+\cot 45^\circ &= -\dfrac{1}{\sqrt{2}}+-\dfrac{1}{\sqrt{2}}-1+1\\\ &= 0\end{align*}$$ **Hence the value of the expression is 0.** **Note:** You can also simplify the expression using the trigonometric formula for the sum of two angles. For example, use the formula for $$\cos (A \pm B)$$ and so on.