Solveeit Logo

Question

Question: Find the value of \[\cos {{210}^{\circ }}\]?...

Find the value of cos210\cos {{210}^{\circ }}?

Explanation

Solution

The value of cos210\cos {{210}^{\circ }} is simply find by using some trigonometry rules and formulas as we know cos(180+θ)=cosθ\cos \left( 180+\theta \right)=-\cos \theta .
So add the 180180 with the remaining number which is likely to be 210180=30210-180=30. So, θ\theta must be 3030. So the final value will be cos30-\cos {{30}^{\circ }}.
Hence, cos210\cos {{210}^{\circ }} is equal to cos30-\cos {{30}^{\circ }} so as we know value of cosθ\cos \theta equals to 32\dfrac{\sqrt{3}}{2} according rules of trigonometry.

Complete step by step solution:
The given trigonometric equation
cos210\cos {{210}^{\circ }}
We have, the formula for
cos(180+θ)=cosθ...........(i)\Rightarrow \cos \left( 180+\theta \right)=-\cos \theta \,\,\,...........\left( i \right)
So, converting the given equation in standard form.
cos(180+30)=cos30\Rightarrow \cos \left( 180+{{30}^{\circ }} \right)=-\cos {{30}^{\circ }}
So, from (i)(i)
\Rightarrow $$$$\cos \left( 180+{{30}^{\circ }} \right)=-\cos {{30}^{\circ }}
And
cos30=32\Rightarrow \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}
=cos30=-\cos {{30}^{\circ }}
=32=\dfrac{\sqrt{3}}{2}

Note: The given equation is cos(210).\cos \left( {{210}^{\circ }} \right). So always make sure that the standard rules of trigonometry equation for solving this type of equation. So learn all the trigonometry rules. Like in this question cos(180+θ)=cosθ.\cos \left( 180+\theta \right)=-\cos \theta .
So cos(210)\cos \left( {{210}^{\circ }} \right) must be converted into cos(180+θ)\cos \left( 180+\theta \right) in order for the equation.