Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Find the value of cos1(45)+tan1(35){{\cos }^{-1}}\left( \frac{4}{5} \right)+{{\tan }^{-1}}\left( \frac{3}{5} \right) .

A

tan1(710){{\tan }^{-1}}\left( \frac{7}{10} \right)

B

tan1(2711){{\tan }^{-1}}\left( \frac{27}{11} \right)

C

sin1(75){{\sin }^{-1}}\left( \frac{7}{5} \right)

D

tan1(15){{\tan }^{-1}}\left( \frac{1}{5} \right)

Answer

tan1(2711){{\tan }^{-1}}\left( \frac{27}{11} \right)

Explanation

Solution

cos1(45)+tan1(35){{\cos }^{-1}}\left( \frac{4}{5} \right)+{{\tan }^{-1}}\left( \frac{3}{5} \right)
\Rightarrow tan1(34)+tan1(35){{\tan }^{-1}}\left( \frac{3}{4} \right)+{{\tan }^{-1}}\left( \frac{3}{5} \right)
={{\tan }^{-1}}\left\\{ \frac{\frac{3}{4}+\frac{3}{5}}{2-\frac{3}{4}.\frac{3}{5}} \right\\}={{\tan }^{-1}}\left\\{ \frac{\frac{15\times 12}{20}}{\frac{20-9}{20}} \right\\}
=tan1(2711)={{\tan }^{-1}}\left( \frac{27}{11} \right)