Solveeit Logo

Question

Question: Find the value of \({\cos ^{ - 1}}\left( {\dfrac{{{a^{ - x}} - {a^x}}}{{{a^{ - x}} + {a^x}}}} \right...

Find the value of cos1(axaxax+ax){\cos ^{ - 1}}\left( {\dfrac{{{a^{ - x}} - {a^x}}}{{{a^{ - x}} + {a^x}}}} \right)

Explanation

Solution

Hint: - Use the identity ax=tanθ{a^x} = \tan \theta
Given equation is
cos1(axaxax+ax) =cos1(1axax1ax+ax)=cos1(1a2x1+a2x)  {\cos ^{ - 1}}\left( {\dfrac{{{a^{ - x}} - {a^x}}}{{{a^{ - x}} + {a^x}}}} \right) \\\ = {\cos ^{ - 1}}\left( {\dfrac{{\dfrac{1}{{{a^x}}} - {a^x}}}{{\dfrac{1}{{{a^x}}} + {a^x}}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{1 - {a^{2x}}}}{{1 + {a^{2x}}}}} \right) \\\
Let ax=tanθ............(1){a^x} = \tan \theta ............\left( 1 \right)
cos1(1a2x1+a2x)=cos1(1(tanθ)21+(tanθ)2)=cos1(1tan2θ1+tan2θ)\Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{1 - {a^{2x}}}}{{1 + {a^{2x}}}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\left( {\tan \theta } \right)}^2}}}{{1 + {{\left( {tan\theta } \right)}^2}}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right)
Now, as we know 1tan2θ1+tan2θ=cos2θ\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \cos 2\theta
cos1(1tan2θ1+tan2θ)=cos1(cos2θ)=2θ\Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right) = {\cos ^{ - 1}}\left( {\cos 2\theta } \right) = 2\theta
But as we know cos1x{\cos ^{ - 1}}x will always lie between (0,π)\left( {0,\pi } \right)
0cos1(cos2θ)π 02θπ 0θπ2...........(2)  0 \leqslant {\cos ^{ - 1}}\left( {\cos 2\theta } \right) \leqslant \pi \\\ \Rightarrow 0 \leqslant 2\theta \leqslant \pi \\\ \Rightarrow 0 \leqslant \theta \leqslant \dfrac{\pi }{2}...........\left( 2 \right) \\\
Now from equation 1
ax=tanθ θ=tan1(ax)  {a^x} = \tan \theta \\\ \Rightarrow \theta = {\tan ^{ - 1}}\left( {{a^x}} \right) \\\
From equation 2
0tan1(ax)π2 tan0axtanπ2  \Rightarrow 0 \leqslant {\tan ^{ - 1}}\left( {{a^x}} \right) \leqslant \dfrac{\pi }{2} \\\ \Rightarrow \tan 0 \leqslant {a^x} \leqslant \tan \dfrac{\pi }{2} \\\
As we know the value of tan0=0\tan 0 = 0 and tanπ2=\tan \dfrac{\pi }{2} = \infty
Therefore from above equation
tan0axtanπ2 =0ax  \tan 0 \leqslant {a^x} \leqslant \tan \dfrac{\pi }{2} \\\ = 0 \leqslant {a^x} \leqslant \infty \\\
So, this is the required solution.

Note: -In such types of questions first substitute ax=tanθ{a^x} = \tan \theta , then simplify using some basic trigonometric properties which is stated above, then always remember the domain of cos1x{\cos ^{ - 1}}x, then again simplify we will get the required answer.