Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Find the value of cos1(cos13π6)cos^{-1}(cos\frac {13\pi}{6})

Answer

We know that cos−1(cos x) = x if x ∈ [0, π\pi], which is the principal value branch of cos−1x.
Here, 13π6\frac {13\pi}{6} ∉ [0, π\pi].
Now,cos-1(cos13π6\frac {13\pi}{6}) can be written as:
cos-1(cos13π6\frac {13\pi}{6}) = cos-1(cos(2π\pi+π6\frac {\pi}{6})) = cos-1(cos π6\frac {\pi}{6}), where π6\frac {\pi}{6} ∈ [0, π\pi].

Therefore cos-1(cos13π6\frac {13\pi}{6}) = cos-1(cos π6\frac {\pi}{6}) = π6\frac {\pi}{6}