Question
Mathematics Question on Inverse Trigonometric Functions
Find the value of cos−1(cos613π)
Answer
We know that cos−1(cos x) = x if x ∈ [0, π], which is the principal value branch of cos−1x.
Here, 613π ∉ [0, π].
Now,cos-1(cos613π) can be written as:
cos-1(cos613π) = cos-1(cos(2π+6π)) = cos-1(cos 6π), where 6π ∈ [0, π].
Therefore cos-1(cos613π) = cos-1(cos 6π) = 6π