Solveeit Logo

Question

Question: Find the value of \( \cos 1{}^\circ \cos 2{}^\circ \cos 3{}^\circ ...\cos 180{}^\circ \) . A. 1 ...

Find the value of cos1cos2cos3...cos180\cos 1{}^\circ \cos 2{}^\circ \cos 3{}^\circ ...\cos 180{}^\circ .
A. 1
B. -1
C. 0
D. None of these.

Explanation

Solution

We know that cos90=0\cos 90{}^\circ =0. Do not try to simplify by using any formula of "Product to Sum" type. If we multiply anything with 0 the result will also come 0.

Complete step-by-step answer:
We know that the value of cosθ\cos \theta lies between -1 and 1.
Recall that cos0=1\cos 0{}^\circ =1 , cos90=0\cos 90{}^\circ =0 and cos180=1\cos 180{}^\circ =-1 .
Since cos90=0\cos 90{}^\circ =0 is one of the terms in the product cos1cos2cos3...cos180\cos 1{}^\circ \cos 2{}^\circ \cos 3{}^\circ ...\cos 180{}^\circ , the final product will be 0.
Hence, the correct answer is C. 0.

Note: The value of sinθ\sin \theta and cosθ\cos \theta lies between -1 and 1.
Remember the trigonometric formula to solve these questions easily.
Sum-Product formula:
sin2A+sin2B=2sin(A+B)cos(AB)\sin 2A+\sin 2B=2\sin (A+B)\cos (A-B)
sin2Asin2B=2cos(A+B)sin(AB)\sin 2A-\sin 2B=2\cos (A+B)\sin (A-B)
cos2A+cos2B=2cos(A+B)cos(AB)\cos 2A+\cos 2B=2\cos (A+B)\cos (A-B)
cos2Acos2B=2sin(A+B)sin(AB)\cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B)
Trigonometric Ratios for Allied Angles:
sin(θ)=sinθ\sin \left( -\theta \right)=-\sin \theta cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta
sin(2nπ+θ)=sinθ\sin \left( 2n\pi +\theta \right)=\sin \theta cos(2nπ+θ)=cosθ\cos \left( 2n\pi +\theta \right)=\cos \theta
sin(nπ+θ)=(1)nsinθ\sin \left( n\pi +\theta \right)={{\left( -1 \right)}^{n}}\sin \theta cos(nπ+θ)=(1)ncosθ\cos \left( n\pi +\theta \right)={{\left( -1 \right)}^{n}}\cos \theta
sin[(2n+1)π2+θ]=(1)ncosθ\sin \left[ (2n+1)\dfrac{\pi }{2}+\theta \right]={{(-1)}^{n}}\cos \theta cos[(2n+1)π2+θ]=(1)n(sinθ)\cos \left[ (2n+1)\dfrac{\pi }{2}+\theta \right]={{(-1)}^{n}}\left( -\sin \theta \right)