Solveeit Logo

Question

Question: Find the value of $f ( t ) = \sum_{k = 1}^{n} \begin{vmatrix} \sin ( 2 K t ) & \cos ( ( n + 1 ) t )...

Find the value of

f(t)=k=1nsin(2Kt)cos((n+1)t)cos(nt)cos((n+1)t)cos(nt)costsin((n+1)t)sin(nt)sintf ( t ) = \sum_{k = 1}^{n} \begin{vmatrix} \sin ( 2 K t ) & \cos ( ( n + 1 ) t ) & \cos ( n t ) \\ \cos ( ( n + 1 ) t ) & \cos ( n t ) & \cos t \\ \sin ( ( n + 1 ) t ) & \sin ( n t ) & \sin t \end{vmatrix}

Answer

sin((n1)t)sin(nt)sin((n+1)t)sin(t)+n(cos((n+1)t)sin(nt)cos(nt)sin(t))-\frac{\sin((n-1)t)\sin(nt)\sin((n+1)t)}{\sin(t)} + n(\cos((n+1)t)\sin(nt) - \cos(nt)\sin(t))

Explanation

Solution

To find the value of f(t)f(t), we first need to evaluate the determinant: Dk=sin(2Kt)cos((n+1)t)cos(nt)cos((n+1)t)cos(nt)cos(t)sin((n+1)t)sin(nt)sin(t)D_k = \begin{vmatrix} \sin(2Kt) & \cos((n+1)t) & \cos(nt) \\ \cos((n+1)t) & \cos(nt) & \cos(t) \\ \sin((n+1)t) & \sin(nt) & \sin(t) \end{vmatrix}

Let X=(n+1)tX = (n+1)t, Y=ntY = nt, Z=tZ = t. The determinant can be written as: Dk=sin(2Kt)cosXcosYcosXcosYcosZsinXsinYsinZD_k = \begin{vmatrix} \sin(2Kt) & \cos X & \cos Y \\ \cos X & \cos Y & \cos Z \\ \sin X & \sin Y & \sin Z \end{vmatrix}

Expand the determinant along the first row: Dk=sin(2Kt)(cosYsinZcosZsinY)cosX(cosXsinZcosZsinX)+cosY(cosXsinYcosYsinX)D_k = \sin(2Kt) (\cos Y \sin Z - \cos Z \sin Y) - \cos X (\cos X \sin Z - \cos Z \sin X) + \cos Y (\cos X \sin Y - \cos Y \sin X)

Using the identity sin(AB)=sinAcosBcosAsinB\sin(A-B) = \sin A \cos B - \cos A \sin B: cosYsinZcosZsinY=(sinYcosZcosYsinZ)=sin(YZ)\cos Y \sin Z - \cos Z \sin Y = -(\sin Y \cos Z - \cos Y \sin Z) = -\sin(Y-Z) cosXsinZcosZsinX=(sinXcosZcosXsinZ)=sin(XZ)\cos X \sin Z - \cos Z \sin X = -(\sin X \cos Z - \cos X \sin Z) = -\sin(X-Z) cosXsinYcosYsinX=(sinXcosYcosXsinY)=sin(XY)\cos X \sin Y - \cos Y \sin X = -(\sin X \cos Y - \cos X \sin Y) = -\sin(X-Y)

Substitute back the values of X,Y,ZX, Y, Z: YZ=ntt=(n1)tY-Z = nt - t = (n-1)t XZ=(n+1)tt=ntX-Z = (n+1)t - t = nt XY=(n+1)tnt=tX-Y = (n+1)t - nt = t

So, the determinant becomes: Dk=sin(2Kt)(sin((n1)t))cos((n+1)t)(sin(nt))+cos(nt)(sin(t))D_k = \sin(2Kt) (-\sin((n-1)t)) - \cos((n+1)t) (-\sin(nt)) + \cos(nt) (-\sin(t)) Dk=sin(2Kt)sin((n1)t)+cos((n+1)t)sin(nt)cos(nt)sin(t)D_k = -\sin(2Kt)\sin((n-1)t) + \cos((n+1)t)\sin(nt) - \cos(nt)\sin(t)

Now, we need to find f(t)=k=1nDkf(t) = \sum_{k=1}^{n} D_k. f(t)=k=1n[sin(2Kt)sin((n1)t)+cos((n+1)t)sin(nt)cos(nt)sin(t)]f(t) = \sum_{k=1}^{n} [-\sin(2Kt)\sin((n-1)t) + \cos((n+1)t)\sin(nt) - \cos(nt)\sin(t)]

The terms cos((n+1)t)sin(nt)cos(nt)sin(t)\cos((n+1)t)\sin(nt) - \cos(nt)\sin(t) are independent of kk.

So, f(t)=sin((n1)t)k=1nsin(2Kt)+n[cos((n+1)t)sin(nt)cos(nt)sin(t)]f(t) = -\sin((n-1)t) \sum_{k=1}^{n} \sin(2Kt) + n[\cos((n+1)t)\sin(nt) - \cos(nt)\sin(t)]

The sum of sines in arithmetic progression is given by k=1nsin(kx)=sin(nx/2)sin((n+1)x/2)sin(x/2)\sum_{k=1}^{n} \sin(kx) = \frac{\sin(nx/2)\sin((n+1)x/2)}{\sin(x/2)}. Here, x=2tx = 2t. k=1nsin(2Kt)=sin(n(2t)/2)sin((n+1)(2t)/2)sin(2t/2)=sin(nt)sin((n+1)t)sin(t)\sum_{k=1}^{n} \sin(2Kt) = \frac{\sin(n(2t)/2)\sin((n+1)(2t)/2)}{\sin(2t/2)} = \frac{\sin(nt)\sin((n+1)t)}{\sin(t)}

Substitute this back into the expression for f(t)f(t): f(t)=sin((n1)t)sin(nt)sin((n+1)t)sin(t)+n[cos((n+1)t)sin(nt)cos(nt)sin(t)]f(t) = -\sin((n-1)t) \frac{\sin(nt)\sin((n+1)t)}{\sin(t)} + n[\cos((n+1)t)\sin(nt) - \cos(nt)\sin(t)]