Question
Question: Find the value of $f ( t ) = \sum_{k = 1}^{n} \begin{vmatrix} \sin ( 2 K t ) & \cos ( ( n + 1 ) t )...
Find the value of
f(t)=∑k=1nsin(2Kt)cos((n+1)t)sin((n+1)t)cos((n+1)t)cos(nt)sin(nt)cos(nt)costsint
−sin(t)sin((n−1)t)sin(nt)sin((n+1)t)+n(cos((n+1)t)sin(nt)−cos(nt)sin(t))
Solution
To find the value of f(t), we first need to evaluate the determinant: Dk=sin(2Kt)cos((n+1)t)sin((n+1)t)cos((n+1)t)cos(nt)sin(nt)cos(nt)cos(t)sin(t)
Let X=(n+1)t, Y=nt, Z=t. The determinant can be written as: Dk=sin(2Kt)cosXsinXcosXcosYsinYcosYcosZsinZ
Expand the determinant along the first row: Dk=sin(2Kt)(cosYsinZ−cosZsinY)−cosX(cosXsinZ−cosZsinX)+cosY(cosXsinY−cosYsinX)
Using the identity sin(A−B)=sinAcosB−cosAsinB: cosYsinZ−cosZsinY=−(sinYcosZ−cosYsinZ)=−sin(Y−Z) cosXsinZ−cosZsinX=−(sinXcosZ−cosXsinZ)=−sin(X−Z) cosXsinY−cosYsinX=−(sinXcosY−cosXsinY)=−sin(X−Y)
Substitute back the values of X,Y,Z: Y−Z=nt−t=(n−1)t X−Z=(n+1)t−t=nt X−Y=(n+1)t−nt=t
So, the determinant becomes: Dk=sin(2Kt)(−sin((n−1)t))−cos((n+1)t)(−sin(nt))+cos(nt)(−sin(t)) Dk=−sin(2Kt)sin((n−1)t)+cos((n+1)t)sin(nt)−cos(nt)sin(t)
Now, we need to find f(t)=∑k=1nDk. f(t)=∑k=1n[−sin(2Kt)sin((n−1)t)+cos((n+1)t)sin(nt)−cos(nt)sin(t)]
The terms cos((n+1)t)sin(nt)−cos(nt)sin(t) are independent of k.
So, f(t)=−sin((n−1)t)∑k=1nsin(2Kt)+n[cos((n+1)t)sin(nt)−cos(nt)sin(t)]
The sum of sines in arithmetic progression is given by ∑k=1nsin(kx)=sin(x/2)sin(nx/2)sin((n+1)x/2). Here, x=2t. ∑k=1nsin(2Kt)=sin(2t/2)sin(n(2t)/2)sin((n+1)(2t)/2)=sin(t)sin(nt)sin((n+1)t)
Substitute this back into the expression for f(t): f(t)=−sin((n−1)t)sin(t)sin(nt)sin((n+1)t)+n[cos((n+1)t)sin(nt)−cos(nt)sin(t)]