Solveeit Logo

Question

Question: Find the value of b if \(\cos \alpha +\cos \beta +\cos \gamma +\cos \left( \alpha +\beta +\gamma \ri...

Find the value of b if cosα+cosβ+cosγ+cos(α+β+γ)=bcos(α+β2)cos(β+γ2)cos(γ+α2).\cos \alpha +\cos \beta +\cos \gamma +\cos \left( \alpha +\beta +\gamma \right)=b\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right)\cos \left( \dfrac{\gamma +\alpha }{2} \right).

Explanation

Solution

We know the formula for the extension of addition of two cosines that converts it into the multiplication form. According to this formula, cosC+cosD=2cos(C+D2)cos(CD2)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) . We need to use this multiple times, and exploit the fact that cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta , to find the value of b.

Complete step by step solution:
We know that to convert the addition of cosines into multiplication of cosines, we have the following formula
cosC+cosD=2cos(C+D2)cos(CD2)...(i)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)...\left( i \right)
We are given that cosα+cosβ+cosγ+cos(α+β+γ)=bcos(α+β2)cos(β+γ2)cos(γ+α2)...(ii)\cos \alpha +\cos \beta +\cos \gamma +\cos \left( \alpha +\beta +\gamma \right)=b\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right)\cos \left( \dfrac{\gamma +\alpha }{2} \right)...\left( ii \right)
Let us use the LHS part of this equation.
LHS=cosα+cosβ+cosγ+cos(α+β+γ)LHS=\cos \alpha +\cos \beta +\cos \gamma +\cos \left( \alpha +\beta +\gamma \right)
Let us use equation (i),
LHS=[cosα+cosβ]+[cosγ+cos(α+β+γ)]LHS=\left[ \cos \alpha +\cos \beta \right]+\left[ \cos \gamma +\cos \left( \alpha +\beta +\gamma \right) \right]
LHS=[2cos(α+β2)cos(αβ2)]+[2cos(γ+(α+β+γ)2)cos(γ(α+β+γ)2)]\Rightarrow LHS=\left[ 2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right) \right]+\left[ 2\cos \left( \dfrac{\gamma +\left( \alpha +\beta +\gamma \right)}{2} \right)\cos \left( \dfrac{\gamma -\left( \alpha +\beta +\gamma \right)}{2} \right) \right]
Simplifying the above equation, we get
LHS=[2cos(α+β2)cos(αβ2)]+[2cos(α+β+2γ2)cos(αβ2)]LHS=\left[ 2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right) \right]+\left[ 2\cos \left( \dfrac{\alpha +\beta +2\gamma }{2} \right)\cos \left( \dfrac{-\alpha -\beta }{2} \right) \right]
We are very well aware of the fact that cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta . Hence, cos(αβ2)=cos(α+β2)\cos \left( \dfrac{-\alpha -\beta }{2} \right)=\cos \left( \dfrac{\alpha +\beta }{2} \right) .
Thus, we can write,
LHS=[2cos(α+β2)cos(αβ2)]+[2cos(α+β+2γ2)cos(α+β2)]LHS=\left[ 2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right) \right]+\left[ 2\cos \left( \dfrac{\alpha +\beta +2\gamma }{2} \right)\cos \left( \dfrac{\alpha +\beta }{2} \right) \right]
We can further simplify the above equation as
LHS=2cos(α+β2)[cos(αβ2)+cos(α+β+2γ2)]LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ \cos \left( \dfrac{\alpha -\beta }{2} \right)+\cos \left( \dfrac{\alpha +\beta +2\gamma }{2} \right) \right]
We can again use equation (i) for the addition of cosines cosC+cosD=2cos(C+D2)cos(CD2)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)
Thus, we get
LHS=2cos(α+β2)[2cos(αβ2+α+β+2γ22)cos(αβ2α+β+2γ22)]LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ 2\cos \left( \dfrac{\dfrac{\alpha -\beta }{2}+\dfrac{\alpha +\beta +2\gamma }{2}}{2} \right)\cos \left( \dfrac{\dfrac{\alpha -\beta }{2}-\dfrac{\alpha +\beta +2\gamma }{2}}{2} \right) \right]
We can simplify the above equation as
LHS=2cos(α+β2)[2cos(αβ+α+β+2γ22)cos(αβαβ2γ22)]LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ 2\cos \left( \dfrac{\dfrac{\alpha -\beta +\alpha +\beta +2\gamma }{2}}{2} \right)\cos \left( \dfrac{\dfrac{\alpha -\beta -\alpha -\beta -2\gamma }{2}}{2} \right) \right]
We can cancel few terms and we will get
LHS=2cos(α+β2)[2cos(2α+2γ22)cos(2β2γ22)]LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ 2\cos \left( \dfrac{\dfrac{2\alpha +2\gamma }{2}}{2} \right)\cos \left( \dfrac{\dfrac{-2\beta -2\gamma }{2}}{2} \right) \right]
LHS=2cos(α+β2)[2cos(α+γ2)cos(βγ2)]\Rightarrow LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ 2\cos \left( \dfrac{\alpha +\gamma }{2} \right)\cos \left( \dfrac{-\beta -\gamma }{2} \right) \right]
We can, now, again use the formula cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta . Hence, we can also say that cos(βγ2)=cos(β+γ2)\cos \left( \dfrac{-\beta -\gamma }{2} \right)=\cos \left( \dfrac{\beta +\gamma }{2} \right) .
Thus, our equation is simplified as
LHS=2cos(α+β2)[2cos(α+γ2)cos(β+γ2)]\Rightarrow LHS=2\cos \left( \dfrac{\alpha +\beta }{2} \right)\left[ 2\cos \left( \dfrac{\alpha +\gamma }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right) \right]
Or we can write it as
LHS=4cos(α+β2)cos(β+γ2)cos(γ+α2)\Rightarrow LHS=4\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right)\cos \left( \dfrac{\gamma +\alpha }{2} \right)
We can now compare this LHS part with the RHS part of equation (ii). So, now we have
4cos(α+β2)cos(β+γ2)cos(γ+α2)=bcos(α+β2)cos(β+γ2)cos(γ+α2)4\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right)\cos \left( \dfrac{\gamma +\alpha }{2} \right)=b\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\beta +\gamma }{2} \right)\cos \left( \dfrac{\gamma +\alpha }{2} \right)
Hence, by comparing, we can say that b=4b=4 .
Thus, the value of b is 4.

Note: This problem requires a good amount of calculation. So, we must be very careful, and try not to make mistakes while calculating. Some of the students, in hurry, may consider cos(2α+2γ22) as cos(2α+2γ22).\cos \left( \dfrac{\dfrac{2\alpha +2\gamma }{2}}{2} \right)\text{ as }\cos \left( \dfrac{2\alpha +2\gamma }{\dfrac{2}{2}} \right).We must be clear that \cos \left( \dfrac{\dfrac{2\alpha +2\gamma }{2}}{2} \right)=\cos \left( \dfrac{\left\\{ \dfrac{2\alpha +2\gamma }{2} \right\\}}{2} \right) and not \cos \left( \dfrac{2\alpha +2\gamma }{\left\\{ \dfrac{2}{2} \right\\}} \right).