Solveeit Logo

Question

Question: Find the value of \( \arcsin \left( \sin \left( 160{}^\circ \right) \right) \) . [a] \( 160{}^\cir...

Find the value of arcsin(sin(160))\arcsin \left( \sin \left( 160{}^\circ \right) \right) .
[a] 160160{}^\circ
[b] 7070{}^\circ
[c] 20-20{}^\circ
[d] 2020{}^\circ

Explanation

Solution

Hint: Use the fact that if y=arcsinxy=\arcsin x , then x=sinyx=\sin y . Assume that arcsin(sin(160))=y\arcsin \left( \sin \left( 160{}^\circ \right) \right)=y
Hence form an equation in y. Use the fact that if sinx=siny\sin x=\sin y then x=nπ+(1)nyx=n\pi +{{\left( -1 \right)}^{n}}y . Use the fact that arcsinx[π2,π2]\arcsin x\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] . Hence find the value of arcsin(sin(160))\arcsin \left( \sin \left( 160{}^\circ \right) \right) .

Complete step-by-step answer:
Complete step-by-step answer:
Before dwelling into the solution of the above question, we must understand how sin1x{{\sin }^{-1}}x is defined even when sinx\sin x is not one-one.
We know that sinx is a periodic function.
Let us draw the graph of sinx

As is evident from the graph sinx is a repeated chunk of the graph of sinx within the interval [A,B]\left[ A,B \right] , and it attains all its possible values in the interval [A,C]\left[ A,C \right] . Here A=π2,B=3π2A=\dfrac{-\pi }{2},B=\dfrac{3\pi }{2} and C=π2C=\dfrac{\pi }{2}
Hence if we consider sinx in the interval [A, C], we will lose no value attained by sinx, and at the same time, sinx will be one-one and onto.
Hence arcsinx\arcsin x is defined over the domain [1,1]\left[ -1,1 \right] , with codomain [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] as in the domain [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] , sinx is one-one and Rsinx=[1,1]{{R}_{\sin x}}=\left[ -1,1 \right] .
Now since arcsinx\arcsin x is the inverse of sinx it satisfies the fact that if y=arcsinxy=\arcsin x , then siny=x\sin y=x .
So let y=arcsin(sin(160))y=\arcsin \left( \sin \left( 160{}^\circ \right) \right)
Hence, we have
sin(y)=sin(160)\sin \left( y \right)=\sin \left( 160{}^\circ \right)
We know that if sinx=siny\sin x=\sin y then x=nπ+(1)ny,nZx=n\pi +{{\left( -1 \right)}^{n}}y,n\in \mathbb{Z} .
Hence, we have
y=nπ+(1)n160×π180=nπ+(1)n89πy=n\pi +{{\left( -1 \right)}^{n}}160\times \dfrac{\pi }{180}=n\pi +{{\left( -1 \right)}^{n}}\dfrac{8}{9}\pi
Now since arcsin(x)[π2,π2],\arcsin \left( x \right)\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right], we have y[π2,π2]y\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]
Taking n =1, we get
y=π8π9=π9y=\pi -\dfrac{8\pi }{9}=\dfrac{\pi }{9}
Hence arcsin(sin(160))=π9=1809=20\arcsin \left( \sin \left( 160{}^\circ \right) \right)=\dfrac{\pi }{9}=\dfrac{180{}^\circ }{9}=20{}^\circ
Hence option [d] is correct.

Note: [1] The above-specified codomain for arcsinx is called principal branch for arcsinx. We can select any branch as long as sinx\sin x is one-one and onto and Range =[1,1]=\left[ -1,1 \right] . Whenever not mentioned, we take the principal branch for the codomain of arcsin(x).
[2] Alternative solution:
We know that \arcsin \left( \sin x \right)=\left\\{ \begin{matrix} \vdots & \vdots \\\ x & ,x\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] \\\ \pi -x & x\in \left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right] \\\ \vdots & \vdots \\\ \end{matrix} \right.
Since 160[π3,3π2]160{}^\circ \in \left[ \dfrac{\pi }{3},\dfrac{3\pi }{2} \right] , we have arcsin(sin(160))=180160=20\arcsin \left( \sin \left( 160{}^\circ \right) \right)=180{}^\circ -160{}^\circ =20{}^\circ
Hence option [a] is correct.
[3] Graph of arcsin(sinx):