Solveeit Logo

Question

Question: Find the value of a variable $a$ if the cofactors of 1 and -1 are equals to $\begin{pmatrix} 1 & 2 ...

Find the value of a variable aa if the cofactors of 1 and -1 are equals to

(12120a435)\begin{pmatrix} 1 & 2 & -1 \\ 2 & 0 & a \\ 4 & 3 & 5 \end{pmatrix}.

Answer

a = -2

Explanation

Solution

We are given the matrix:

A=(12120a435).A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 0 & a \\ 4 & 3 & 5 \end{pmatrix}.

The problem states that the cofactors corresponding to the entries 11 (position (1,1)(1,1)) and 1-1 (position (1,3)(1,3)) are equal.

  1. Cofactor of 11 (at (1,1)(1,1))

    C11=(1)1+1det(0a35)=1×(05a3)=3a.C_{11} = (-1)^{1+1} \det\begin{pmatrix} 0 & a \\ 3 & 5 \end{pmatrix} = 1 \times (0\cdot5 - a\cdot3) = -3a.
  2. Cofactor of 1-1 (at (1,3)(1,3))

    C13=(1)1+3det(2043)=1×(2304)=6.C_{13} = (-1)^{1+3} \det\begin{pmatrix} 2 & 0 \\ 4 & 3 \end{pmatrix} = 1 \times (2\cdot3 - 0\cdot4) = 6.

Set the cofactors equal:

3a=6a=2.-3a = 6 \quad \Longrightarrow \quad a = -2.

Equate cofactor at (1,1): 3a-3a to that at (1,3): 66 and solve: 3a=6a=2-3a = 6 \Rightarrow a = -2.