Solveeit Logo

Question

Question: Find the value of \[A\] in this derivative \[\int\limits_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\s...

Find the value of AA in this derivative
1313x41x4cos12x1+x2dx=A3+A212A4log313+1\int\limits_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} {\cos ^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}}dx = \dfrac{A}{{\sqrt 3 }} + \dfrac{{{A^2}}}{{12}} - \dfrac{A}{4}\log \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}
A. π \pi {\text{ }}
B. 2π2\pi
C. 3π3\pi
D. None of these{\text{None of these}}

Explanation

Solution

we have to find the value of A in this sum we need to solve using both side similarities. Before that we have to know about integration, Integration is a derivative which increases the value and it processes on with the limits. First we need to know about odd and even functions. To find out whether the function is odd or even the interval must be in the form of [a,a]\left[ { - a,a} \right]. If for that there will be formulas to solve and limits which should be solved in the function by complete step-by-step solution.

Formula used: cos1y=π2sin1y{\cos ^{ - 1}}y = \dfrac{\pi }{2}{\sin ^{ - 1}}y
tan1x=x1+x2{\tan ^{ - 1}}x = \dfrac{x}{{1 + {x^2}}}
a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b)
tan1x=11+x2{\tan ^{ - 1}}x = \dfrac{1}{{1 + {x^2}}}
dxa2x2=12aloga+xax\int {\dfrac{{dx}}{{{a^2} - {x^2}}} = \dfrac{1}{{2a}}\log \dfrac{{a + x}}{{a - x}}}

Complete step-by-step answer:
We have to find the value of AA in the given derivative. The given derivative is 1313x41x4cos12x1+x2dx=A3+A212A4log313+1\int\limits_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} {\cos ^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}}dx = \dfrac{A}{{\sqrt 3 }} + \dfrac{{{A^2}}}{{12}} - \dfrac{A}{4}\log \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}
First we need to convert the derivation from cos1{\cos ^{ - 1}} to sin1{\sin ^{ - 1}}, because for this type of sum we need think reverse, LHS
1313x41x4cos12x1+x2dx\Rightarrow \int\limits_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\dfrac{{{x^4}}}{{1 - {x^4}}}} {\cos ^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}}dx
We have solve separately,
Let us consider, cos12x1+x2{\cos ^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}}
Now use the formula mentioned in formulas used
cos12x1+x2=π2sin12x1+x2\Rightarrow {\cos ^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}} = \dfrac{\pi }{2} - {\sin ^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}}
Now, again use tan1x{\tan ^{ - 1}}x formula mention in formula used
Then, sin12x1+x2=2tan1x{\sin ^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}} = 2{\tan ^{ - 1}}x
Then, the derivation becomes
1313[x41x4(π22tan1x)] \Rightarrow \int\limits_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\left[ {\dfrac{{{x^4}}}{{1 - {x^4}}}\left( {\dfrac{\pi }{2} - 2{{\tan }^{ - 1}}x} \right)} \right]} {\text{ }}
Now multiply the fraction in the bracket variable, we get
1313[π2x41x4x41x42tan1x] dx\Rightarrow \int\limits_{ - \dfrac{1}{{\sqrt 3 }}}^{\dfrac{1}{{\sqrt 3 }}} {\left[ {\dfrac{\pi }{2}\dfrac{{{x^4}}}{{1 - {x^4}}} - \dfrac{{{x^4}}}{{1 - {x^4}}}2{{\tan }^{ - 1}}x} \right]} {\text{ }}dx
Now, applying odd and even function, that is
If  f(x)=f(x){\text{ }}f( - x) = f(x), the function is even
If  f(x)=f(x){\text{ }}f( - x) = - f(x), the function is odd
By, applying this concept, we can able to check the function is odd or even
If a function becomes odd, then the function will becomes zero,
Then the function will becomes twice the value,
That is, f(x)=0f(x) = 0
x41x2tan1x\because \dfrac{{{x^4}}}{{1 - x}}2{\tan ^{ - 1}}x is an odd function.
Then, x41x2tan1x = 0\therefore \dfrac{{{x^4}}}{{1 - x}}2{\tan ^{ - 1}}x{\text{ = 0}}
If a integral function is even, then aaf(x)=20af(x)\int\limits_{ - a}^a {f(x) = 2\int\limits_0^a {f(x)} }
Then, then function π2x41x4(h3)2+(k4)2=50\dfrac{\pi }{2}\dfrac{{{x^4}}}{{1 - {x^4}}}{(h - 3)^2} + {(k - 4)^2} = 50 becomes even, then we applying integral function on even concept, and taking π2\dfrac{\pi }{2} out of integral, we get
2.π2013(1+11x4) dx+0\Rightarrow 2.\dfrac{\pi }{2}\int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\left( { - 1 + \dfrac{1}{{1 - {x^4}}}} \right){\text{ }}} dx + 0
Now, multiplying 2 inside the function, we get
π2013(2+21x4)  dx+0\Rightarrow \dfrac{\pi }{2}\int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\left( { - 2 + \dfrac{2}{{1 - {x^4}}}} \right)} \;dx + 0
Now, consider
21x4=2(1x2)(1+x2)\Rightarrow \dfrac{2}{{1 - {x^4}}} = \dfrac{2}{{(1 - {x^2})(1 + {x^2})}}
Once again, use the formula mentioned in formula used, then we need add and sub x2{x^2} arbitrary, which means imaginary
21x4=1+1+x2x2(1x2)(1+x2)\Rightarrow \dfrac{2}{{1 - {x^4}}} = \dfrac{{1 + 1 + {x^2} - {x^2}}}{{(1 - {x^2})(1 + {x^2})}}
21x4=11x2+11+x2\Rightarrow \dfrac{2}{{1 - {x^4}}} = \dfrac{1}{{1 - {x^2}}} + \dfrac{1}{{1 + {x^2}}}
Now substitute the value in the derivation, we get
π2013(2+11x2+11+x2)  dx\Rightarrow \dfrac{\pi }{2}\int\limits_0^{\dfrac{1}{{\sqrt 3 }}} {\left( { - 2 + \dfrac{1}{{1 - {x^2}}} + \dfrac{1}{{1 + {x^2}}}} \right)\;} dx
Now, once use formula mentioned in formula used and then integrate, we get
π2[2x+12.1log1+x1x+tan1x]013\Rightarrow \dfrac{\pi }{2}\left[ { - 2x + \dfrac{1}{{2.1}}\log \dfrac{{1 + x}}{{1 - x}} + {{\tan }^{ - 1}}x} \right]_0^{\dfrac{1}{{\sqrt 3 }}}
Now substituting limit values, for substituting limit values for 00 then the whole values becomes zero, then only13\dfrac{1}{{\sqrt 3 }}values get substitute in the derivation for variable xx,
π2[23+12log3+131+π6]\Rightarrow \dfrac{\pi }{2}\left[ {\dfrac{{ - 2}}{{\sqrt 3 }} + \dfrac{1}{2}\log \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}} + \dfrac{\pi }{6}} \right]
Now, multiply π2\dfrac{\pi }{2} in the bracket expression after rearranging, we get
π212+π3π2log313+1\Rightarrow \dfrac{{{\pi ^2}}}{{12}} + \dfrac{\pi }{3} - \dfrac{\pi }{2}\log \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}
Now, look at the question,
RHS, Compare with the solution, then the value of AA is π\pi
Thus the correct answer for a value AA is π\pi

So, the correct answer is “Option A”.

Note: The solution needs to be determined in the manner of the reverse method and also these kinds of problems need attention step by step. The problem has to be simply on an idea based on another side it may lead may step and change in step by according to the question we need to find the missing value. So that the problem on integral function needs to be more about ideas on formulas that must be relocated according to the problem.