Solveeit Logo

Question

Question: Find the value of a for which the inequality \[co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)...

Find the value of a for which the inequality cot2x + (a+1)cotx(a3)<0,co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0, is true for at least one x(0,π2)x \in (0,\dfrac{\pi }{2})
(A) a(,1)a \in ( - \infty , - 1)
(B) a(3,25),3a \in \\{ ( - 3, - 2\sqrt 5 ),3\\}
(C) α(,325)(3,)\alpha \in ( - \infty , - 3 - 2\sqrt 5 ) \cup (3,\infty )
(D) None of these

Explanation

Solution

Hint : To solve this question, we will start with assuming cotx = t\cot x{\text{ }} = {\text{ }}t, then we get our given equation in the form t2+(a+1)t(a3)<0{t^2} + (a + 1)t - (a - 3) < 0 for at least one t(0,)t \in (0,\infty ) . From here we will consider two cases, and then we will get our required answer.

Complete step-by-step answer :
We have been given an inequality cot2x + (a+1)cotx(a3)<0,co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0, and we need to find the value of a for which the inequality is true for at least one x(0,π2)x \in (0,\dfrac{\pi }{2}) .
cot2x + (a+1)cotx(a3)<0,co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0, for at least one x(0,π2)x \in (0,\dfrac{\pi }{2}) .
Now, let cotx = t\cot x{\text{ }} = {\text{ }}t
We know that, cot0=\cot 0 = \infty and cotπ2=0\cot \dfrac{\pi }{2} = 0
Since, x(0,π2)x \in (0,\dfrac{\pi }{2}) , therefore, on putting cot0=\cot 0 = \infty and cotπ2=0\cot \dfrac{\pi }{2} = 0 , we get t(0,)t \in (0,\infty )
Now on putting the value cotx = t\cot x{\text{ }} = {\text{ }}t, we get our above equation cot2x + (a+1)cotx(a3)<0,co{t^2}x{\text{ }} + {\text{ }}\left( {a + 1} \right)cotx - \left( {a - 3} \right) < 0, in the form {t^2} + (a + 1)t - (a - 3) < 0\.
Now, let f(t)=t2+(a+1)t(a3)<0f(t) = {t^2} + (a + 1)t - (a - 3) < 0 , for at least one t(0,)t \in (0,\infty )
So, we have two following possibilities for f(t). Let us see the cases mentioned below.
Case 1:
f(0)<0 f(0)=(a3)<0 =a+3<0 =a<\-3 =a>3  f(0) < 0 \\\ f(0) = - (a - 3) < 0 \\\ = - a + 3 < 0 \\\ = - a < \- 3 \\\ = a > 3 \\\
Case 2:
We have been given a quadratic equation, so, we will consider, D> 0D > {\text{ }}0, i.e., the equation will have distinct roots.

i.e.,b24ac>0i.e.,{b^2} - 4ac > 0
(a+1)2+4(a3)>0 a2+6a11>0 (a+3)2>20 a+3<\-25 or a+3>25 a<\-322 or a>3+25...eq.(1)   \Rightarrow {(a + 1)^2} + 4(a - 3) > 0 \\\ \Rightarrow {a^2} + 6a - 11 > 0 \\\ \Rightarrow {(a + 3)^2} > 20 \\\ \Rightarrow a + 3 < \- 2\sqrt 5 {\text{ or }}a + 3 > 2\sqrt 5 \\\ \Rightarrow a < \- 3 - 2 - \sqrt 2 {\text{ or a}} > - 3 + 2\sqrt 5 ...eq.(1) \\\ \\\
We had considered earlier, D>0,D > 0,then
b2a>0 (a+1)>0 a<\-1...eq.(2) a(0)0 a+30 a3...eq.(3)  \dfrac{{ - b}}{{2a}} > 0 \\\ \Rightarrow - (a + 1) > 0 \\\ \Rightarrow a < \- 1...eq.(2) \\\ \Rightarrow a(0) \geqslant 0 \\\ \Rightarrow - a + 3 \geqslant 0 \\\ \Rightarrow a \leqslant 3...eq.(3) \\\
From eq.(1), (2)eq.\left( 1 \right),{\text{ }}\left( 2 \right) and (3),\left( 3 \right), we get
a(,325)a \in ( - \infty , - 3 - 2\sqrt 5 )
So, from both the cases, we get
α(,325)(3,)\alpha \in ( - \infty , - 3 - 2\sqrt 5 ) \cup (3,\infty )
Hence, option (C), α(,325)(3,)\alpha \in ( - \infty , - 3 - 2\sqrt 5 ) \cup (3,\infty ) is correct.
So, the correct answer is “Option C”.

Note : In the question, we have been given a quadratic equation. The standard form of quadratic equation is ax2+bx+c=0.a{x^2} + bx + c = 0.
Discriminant,   D = b24ac\;D{\text{ }} = {\text{ }}{b^2} - 4ac
The value of D tells us the kind of root equation has. If D>0,D > 0,then the equation has two distinct roots.
If D=0,D = 0, then the equation has one real root.
If D<0,D < 0, then the equation has no real roots, i.e., two imaginary roots will form.