Solveeit Logo

Question

Question: Find the value of a for which the function \[f\left( x\right) =ax^{3}-3\left( a+2\right) x^{2}+9\lef...

Find the value of a for which the function f(x)=ax33(a+2)x2+9(a+2)x1f\left( x\right) =ax^{3}-3\left( a+2\right) x^{2}+9\left( a+2\right) x-1 is decreasing for all xRx\in \mathbf{R}.

Explanation

Solution

Hint: In this question it is given that we have to find the value of a for which the function f(x)=ax33(a+2)x2+9(a+2)x1f\left( x\right) =ax^{3}-3\left( a+2\right) x^{2}+9\left( a+2\right) x-1 is decreasing for all xRx\in \mathbf{R}.
So to find the solution we need to know that if a function is decreasing in any domain then the first derivative of that function in that domain is always greater than zero, i.e, f(x)<0f^{\prime }\left( x\right) < 0.

Complete step-by-step answer:
Given function,
f(x)=ax33(a+2)x2+9(a+2)x1f\left( x\right) =ax^{3}-3\left( a+2\right) x^{2}+9\left( a+2\right) x-1..........(1)
Now differentiating both side w.r.t ‘x’ we get,
\dfrac{d}{dx} f\left( x\right) =\dfrac{d}{dx} \left\\{ ax^{3}-3\left( a+2\right) x^{2}+9\left( a+2\right) x-1\right\\}
f(x)=addx(x3)3(a+2)ddx(x2)+9(a+2)ddx(x)ddx(1)\Rightarrow f^{\prime }\left( x\right) =a\dfrac{d}{dx} \left( x^{3}\right) -3\left( a+2\right) \dfrac{d}{dx} \left( x^{2}\right) +9\left( a+2\right) \dfrac{d}{dx} \left( x\right) -\dfrac{d}{dx} \left( 1\right)
[ddxf(x)=f(x)\because \dfrac{d}{dx} f\left( x\right) =f^{\prime }\left( x\right) ]
Now as we know that ddx(xn)=nxn1\dfrac{d}{dx} \left( x^{n}\right) =nx^{n-1},
So we can write,
f(x)=a×3x23(a+2)×2x+9(a+2)×10f^{\prime }\left( x\right) =a\times 3x^{2}-3\left( a+2\right) \times 2x+9\left( a+2\right) \times 1-0
=3ax26(a+2)x+9(a+2)=3ax^{2}-6\left( a+2\right) x+9\left( a+2\right) ........(2)
Here it is given xRx\in \mathbf{R}, i.e, <x<-\infty < x <\infty
Now since the function is decreasing therefore we can write,
f(x)<0f^{\prime }\left( x\right) <0

<0$$.......(3) So for this we have to know that if any quadratic equation is less than zero, then the coefficient of x is less than zero also discriminant (D) is also less than zero, i.e, if $$px^{2}+qx+r < 0$$ then p < 0 and D < 0. Where D = $$q^{{}2}-4pr$$. Now if we compare the equation (3) with $$px^{2}+qx+r<0$$, then we can write, p = 3a, q = -6(a+2), r = 9(a+2) Therefore by the above formula, p < 0 $$\Rightarrow 3a < 0$$ $$\Rightarrow a < 0$$ Therefore, $$a\in \left( -\infty ,0\right) $$......(4) And, $$q^{2}-4pr<\ 0$$ $$\Rightarrow \left\\{ -6\left( a+2\right) \right\\}^{2} -4\times 3a\times 9\left( a+2\right) <\ 0$$ $$\Rightarrow 36\left( a+2\right)^{2} -108a\left( a+2\right) <\ 0$$ $$\Rightarrow \left( a+2\right) \\{ 36\left( a+2\right) -108a\\} <\ 0$$ $$\Rightarrow \left( a+2\right) \\{ 36a+72-108a\\} <\ 0$$ $$\Rightarrow \left( a+2\right) (72-72a)<\ 0$$ $$\Rightarrow \left( a+2\right) \times 72\left( 1-a\right) <\ 0$$ $$\Rightarrow 72\left( a+2\right) \left( 1-a\right) <\ 0$$ $$\Rightarrow -72\left( a+2\right) \left( a-1\right) <\ 0$$ $$\Rightarrow -\left( a+2\right) \left( a-1\right) <\ 0$$ $$\Rightarrow \left( a+2\right) \left( a-1\right) >\ 0$$ [if -a < b, then a > -b] $$\text{Either} \ \left( a+2\right) >0\ \text{and} \ \left( a-1\right) >0$$ $$\therefore a>-2\ \text{and} \ a>1$$ Which gives, $$a\in \left( 1,\infty \right) $$ $$\text{or} \ \left( a+2\right) <0\ \text{and} \ \left( a-1\right) <0$$ $$\therefore a<-2\ \text{and} \ a<1$$ Which implies, $$a\in \left( -\infty ,-2\right) $$ Now since in between the conditions or is given so we have to take union, i,e, $$a\in \left( -\infty ,-2\right) \cup \left( 1,\infty \right) $$..........(5) Now from we have to take intersection of a from the conditions (4) and (5), Therefore we get, $$a\in \left( -\infty ,0\right) \cap \left\\{ \left( -\infty ,-2\right) \cup \left( 1,\infty \right) \right\\} $$ Which implies, $$a\in \left( -\infty ,-2\right) $$, Which gives the all possible values of a for which the function is decreasing. Note: While solving this type of question you need to know that if you have given ab > 0, then from here two cases arise and the cases are either, a > 0 & b > 0 or a < 0 & b < 0., i,e, multiplication of two factors is positive if and only if they both positive or they both negative.