Question
Question: Find the value of a and b such that\(\int{\dfrac{dx}{1\ +\ \sin x}}\ =\ \tan (x+\ a)\ +\ b\)....
Find the value of a and b such that∫1 + sinxdx = tan(x+ a) + b.
Solution
Hint: 1+sinx1cannot be integrated directly so convert the function such that we can integrate it. Rationalize the given function 1+sinx1 before integrating it.
Consider the expression,
∫1 + sinxdx =tan(x+a)+b…(1.1)
Now,
∫1 + sinxdx=tan(x+a)+b
Multiply (1−sinx) with both numerator and denominator in L.H.S., we get
∫1 + sinxdx×(1 − sinx)(1 − sinx)=tan(x+a)+b
We know a2 − b2= (a + b)(a − b) so in denominator, we use this formula and we
get
∫12 −sin2x(1 − sinx )dx=tan(x+a)+b
We know12 −sin2x=cos2x , so the above equation becomes
∫cos2x (1 − sinx )dx=tan(x+a)+b
Separating the denominator, we get
∫(cos2x1 − cos2xsinx )dx=tan(x+a)+b
We know that cos2x1 = sec2x , cosxsinx = tanx and
cosx 1 = secx, so the above equation becomes
∫sec2x dx − ∫cosxsinx×cosx1 dx=tan(x+a)+b
∫sec2x dx − ∫tanx secxdx=tan(x+a)+b
We know, ∫sec2x dx = tanx and∫tanx secxdx = secx, so above
equation becomes
⇒tanx−secx+C=tan(x+a)+b
Hence, comparing both side we get the value of a & b, so
a=0; b=−secx+C
Note: In expression∫1 + sinxdx , it’s important to rationalize so that we can get a function after integration which resembles the R.H.S. Without rationalizing, solving the expression becomes complicated and time consuming.