Solveeit Logo

Question

Question: Find the value of a and b such that\(\int{\dfrac{dx}{1\ +\ \sin x}}\ =\ \tan (x+\ a)\ +\ b\)....

Find the value of a and b such thatdx1 + sinx = tan(x+ a) + b\int{\dfrac{dx}{1\ +\ \sin x}}\ =\ \tan (x+\ a)\ +\ b.

Explanation

Solution

Hint: 11+sinx\dfrac{1}{1+\sin x}cannot be integrated directly so convert the function such that we can integrate it. Rationalize the given function 11+sinx\dfrac{1}{1+\sin x} before integrating it.

Consider the expression,
dx1 + sinx =tan(x+a)+b\int{\dfrac{dx}{1\ +\ \sin x}}\ =\tan (x+a)+b…(1.1)
Now,
dx1 + sinx=tan(x+a)+b\int{\dfrac{dx}{1\ +\ \sin x}}=\tan (x+a)+b
Multiply (1sinx)(1-\sin x) with both numerator and denominator in L.H.S., we get
dx1 + sinx×(1  sinx)(1  sinx)=tan(x+a)+b\int{\dfrac{dx}{1\ +\ \sin x}}\times \dfrac{(1\ -\ \sin x)}{(1\ -\ \sin x)}=\tan (x+a)+b
We know a2  b2= (a + b)(a  b){{a}^{2\ }}-\ {{b}^{2}}=\ (a\ +\ b)(a\ -\ b) so in denominator, we use this formula and we
get
(1  sinx )dx12 sin2x=tan(x+a)+b\int{\dfrac{(1\ -\ \sin x\ )dx}{{{1}^{2}}\ -{{\sin }^{2}}x}}=\tan (x+a)+b
We know12 sin2x=cos2x {{1}^{2}}\ -{{\sin }^{2}}x={{\cos }^{2}}x\ , so the above equation becomes
(1  sinx )dxcos2x =tan(x+a)+b\int{\dfrac{(1\ -\ \sin x\ )dx}{{{\cos }^{2}}x\ }}=\tan (x+a)+b
Separating the denominator, we get
(1cos2x  sinxcos2x )dx=tan(x+a)+b\int (\dfrac{1}{{{\cos }^{2}}x}\ -\ \dfrac{\sin x}{{{\cos }^{2}}x}\ )dx=\tan (x+a)+b
We know that 1cos2x = sec2x\dfrac{1}{{{\cos }^{2}}x}\ =\ {{\sec }^{2}}x , sinxcosx = tanx\dfrac{\sin x}{\cos x}\ =\ \tan x and
 1cosx = secx\dfrac{\ 1}{\cos x}\ =\ \sec x, so the above equation becomes
sec2x dx   sinxcosx×1cosx dx=tan(x+a)+b\int{{{\sec }^{2}}x\ dx\ \ -\ \int{\dfrac{\sin x}{\cos x}\times \dfrac{1}{\cos x}\ dx}}=\tan (x+a)+b
sec2x dx   tanx secxdx=tan(x+a)+b\int{{{\sec }^{2}}x\ dx\ \ -\ \int{\tan x\ \sec xdx}}=\tan (x+a)+b
We know, sec2x dx = tanx \int{{{\sec }^{2}}x\ dx\ =\ \tan x\ }andtanx secxdx = secx\int{\tan x\ \sec xdx\ =\ \sec x}, so above
equation becomes

tanxsecx+C=tan(x+a)+b\Rightarrow \tan x-\sec x+C=\tan (x+a)+b
Hence, comparing both side we get the value of a & b, so
a=0a=0; b=secx+Cb=-\sec x+C
Note: In expressiondx1 + sinx  \int{\dfrac{dx}{1\ +\ \sin x}}\ \ , it’s important to rationalize so that we can get a function after integration which resembles the R.H.S. Without rationalizing, solving the expression becomes complicated and time consuming.